Compare projects

Project comparisons allow you to view any selection of projects side by side just like they're shown on regular categories or in search results. You can try out an example or start yourself by adding a library to the comparison via the input below. You can also easily share your current comparison with others by sending the URL of the current page.

kalman_filter
    0.01
    No commit activity in last 3 years
    No release in over 3 years
    Noisy sensor data, approximations in the equations that describe the system evolution, and external factors that are not accounted for all place limits on how well it is possible to determine the system's state. The Kalman filter deals effectively with the uncertainty due to noisy sensor data and to some extent also with random external factors. The Kalman filter produces an estimate of the state of the system as an average of the system's predicted state and of the new measurement using a weighted average. The purpose of the weights is that values with better (i.e., smaller) estimated uncertainty are "trusted" more. The weights are calculated from the covariance, a measure of the estimated uncertainty of the prediction of the system's state. The result of the weighted average is a new state estimate that lies between the predicted and measured state, and has a better estimated uncertainty than either alone. This process is repeated at every time step, with the new estimate and its covariance informing the prediction used in the following iteration. This means that the Kalman filter works recursively and requires only the last "best guess", rather than the entire history, of a system's state to calculate a new state.
    2005
    2006
    2007
    2008
    2009
    2010
    2011
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025