Project
Reverse Dependencies for bundler
The projects listed here declare bundler as a runtime or development dependency
0.0
A gem for parsign unified diff files into usable Ruby objects
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
0.0
Unified stateless cross-application CSRF prevention implementation for Rails
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
0.0
unified hyphen
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
Activity
0.0
iap order veify service for googleplay and amazon and ios
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
0.0
Mainly useful for aggregating the logs of all the rails applications in your organization at one place. All the rails app connect to a restful logger where the logs are stored in the database.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
0.0
Unifies many queue implementations under the single interface. Includes both single queue libraries and multiple queue libraries.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
Activity
0.0
An unified redis interface for redis-rb and em-redis.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
Activity
0.0
A Ruby interface to UniFi Controller API.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
0.0
Send SMS messages using Unifonic Api.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
Activity
0.0
一個統一發票的查詢、兌獎 gem
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
0.0
Wrap external services in a uniform package.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
0.0
`uniform_resource_identifier` splits URIs according to RFC 3986 using regexp, attempts to check the public suffix using `public_suffix`, and serializes the query string using `active_support` and `addressable`
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
Activity
0.0
A gem to detect and differentiate between Traditional Chinese, Simplified Chinese based on Unihan data.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
Activity
0.0
Unimatrix CLI
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
Activity
0.0
Generates file contents for UnionBank's eCrediting enrollment and transaction files.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
Activity
0.0
In computer science, a disjoint-set data structure, also called a union–find data structure or merge–find set, is a data structure that keeps track of a set of elements partitioned into a number of disjoint (non-overlapping) subsets. It provides near-constant-time operations (bounded by the inverse Ackermann function) to add new sets, to merge existing sets, and to determine whether elements are in the same set. In addition to many other uses (see the Applications section), disjoint-sets play a key role in Kruskal's algorithm for finding the minimum spanning tree of a graph.
A disjoint-set forest consists of a number of elements each of which stores an id, a parent pointer, and, in efficient algorithms, a value called the "rank".
The parent pointers of elements are arranged to form one or more trees, each representing a set. If an element's parent pointer points to no other element, then the element is the root of a tree and is the representative member of its set. A set may consist of only a single element. However, if the element has a parent, the element is part of whatever set is identified by following the chain of parents upwards until a representative element (one without a parent) is reached at the root of the tree.
Forests can be represented compactly in memory as arrays in which parents are indicated by their array index.
Disjoint-set data structures model the partitioning of a set, for example to keep track of the connected components of an undirected graph. This model can then be used to determine whether two vertices belong to the same component, or whether adding an edge between them would result in a cycle. The Union–Find algorithm is used in high-performance implementations of unification.
This data structure is used by the Boost Graph Library to implement its Incremental Connected Components functionality. It is also a key component in implementing Kruskal's algorithm to find the minimum spanning tree of a graph.
Note that the implementation as disjoint-set forests doesn't allow the deletion of edges, even without path compression or the rank heuristic.
Sharir and Agarwal report connections between the worst-case behavior of disjoint-sets and the length of Davenport–Schinzel sequences, a combinatorial structure from computational geometry.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
Activity
0.0
Union Find is an algorithm that uses a disjoint-set data structure. It allows us to efficiently connect any items of a given list and to efficiently check whether two items of this list are connected (any degree of separation) or not.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
Activity
0.0
This is a union_find_tree library. It is used for connecting and grouping items. you can connect any object
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
0.0
UPOP and UPMP SDK
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
Activity
0.0
An unofficial unionpay gem
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
Activity