Project
charlie
== DESCRIPTION: Charlie is a library for genetic algorithms (GA) and genetic programming (GP). == FEATURES: - Quickly develop GAs by combining several parts (genotype, selection, crossover, mutation) provided by the library. - Sensible defaults are provided with any genotype, so often you only need to define a fitness function. - Easily replace any of the parts by your own code. - Test different strategies in GA, and generate reports comparing them. Example report: http://charlie.rubyforge.org/example_report.html == INSTALL: * sudo gem install charlie == EXAMPLES: This example solves a TSP problem (also quiz #142): N=5 CITIES = (0...N).map{|i| (0...N).map{|j| [i,j] } }.inject{|a,b|a+b} class TSP < PermutationGenotype(CITIES.size) def fitness d=0 (genes + [genes[0]]).each_cons(2){|a,b| a,b=CITIES[a],CITIES[b] d += Math.sqrt( (a[0]-b[0])**2 + (a[1]-b[1])**2 ) } -d # lower distance -> higher fitness. end use EdgeRecombinationCrossover, InversionMutator end Population.new(TSP,20).evolve_on_console(50) This example finds a polynomial which approximates cos(x) class Cos < TreeGenotype([proc{3*rand-1.5},:x], [:-@], [:+,:*,:-]) def fitness -[0,0.33,0.66,1].map{|x| (eval_genes(:x=>x) - Math.cos(x)).abs }.max end use TournamentSelection(4) end Population.new(Cos).evolve_on_console(500)
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
Development
Dependencies
Development
>= 1.8.3