No commit activity in last 3 years
No release in over 3 years
Fluentd plugin to store data on Google BigQuery, by load, or by stream inserts
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
 Project Readme

fluent-plugin-bigquery-custom

Build Status

forked from kaizenplatform/fluent-plugin-bigquery

This plugin is End of Life. Almost feature is included in original. I recommend to use original, instead of this.


Fluentd output plugin to load/insert data into Google BigQuery.

Current version of this plugin supports Google API with Service Account Authentication, but does not support OAuth flow for installed applications.

Difference with original

  • Implement load method
  • Use google-api-client v0.9.pre
  • TimeSlicedOutput based
  • Use %{time_slice} placeholder in table parameter
  • Add config parameters
    • skip_invalid_rows
    • max_bad_records
    • ignore_unknown_values
    • prevent_duplicate_load
    • template_suffix
    • schema_cache_expire
  • Improve error handling
  • Add templateSuffix feature
    • template_suffix can use same placeholder for table
    • If use load method, emulate templateSuffix process. But, slightly different with Streaming Insert.
      1. Fetch Schema from base table per schema_cache_expire time
      2. If table exists, Insert job with no schema data.
      3. Unless table exists, Insert job with fetched schema data.

Configuration

Streaming inserts

Configure insert specifications with target table schema, with your credentials. This is minimum configurations:

<match dummy>
  type bigquery
  
  method insert    # default
  
  auth_method private_key   # default
  email xxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxx@developer.gserviceaccount.com
  private_key_path /home/username/.keys/00000000000000000000000000000000-privatekey.p12
  # private_key_passphrase notasecret # default
  
  project yourproject_id
  dataset yourdataset_id
  table   tablename
  
  time_format %s
  time_field  time
  
  field_integer time,status,bytes
  field_string  rhost,vhost,path,method,protocol,agent,referer
  field_float   requesttime
  field_boolean bot_access,loginsession
</match>

For high rate inserts over streaming inserts, you should specify flush intervals and buffer chunk options:

<match dummy>
  type bigquery
  
  method insert    # default
  
  flush_interval 1  # flush as frequent as possible
  
  buffer_chunk_records_limit 300  # default rate limit for users is 100
  buffer_queue_limit 10240        # 1MB * 10240 -> 10GB!
  
  num_threads 16
  
  auth_method private_key   # default
  email xxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxx@developer.gserviceaccount.com
  private_key_path /home/username/.keys/00000000000000000000000000000000-privatekey.p12
  # private_key_passphrase notasecret # default
  
  project yourproject_id
  dataset yourdataset_id
  tables  accesslog1,accesslog2,accesslog3
  
  time_format %s
  time_field  time
  
  field_integer time,status,bytes
  field_string  rhost,vhost,path,method,protocol,agent,referer
  field_float   requesttime
  field_boolean bot_access,loginsession
</match>

Important options for high rate events are:

  • tables
    • 2 or more tables are available with ',' separator
    • out_bigquery uses these tables for Table Sharding inserts
    • these must have same schema
  • buffer_chunk_limit
    • max size of an insert or chunk (default 1000000 or 1MB)
    • the max size is limited to 1MB on BigQuery
  • buffer_chunk_records_limit
    • number of records over streaming inserts API call is limited as 500, per insert or chunk
    • out_bigquery flushes buffer with 500 records for 1 inserts API call
  • buffer_queue_limit
    • BigQuery streaming inserts needs very small buffer chunks
    • for high-rate events, buffer_queue_limit should be configured with big number
    • Max 1GB memory may be used under network problem in default configuration
      • buffer_chunk_limit (default 1MB) x buffer_queue_limit (default 1024)
  • num_threads
    • threads for insert api calls in parallel
    • specify this option for 100 or more records per seconds
    • 10 or more threads seems good for inserts over internet
    • less threads may be good for Google Compute Engine instances (with low latency for BigQuery)
  • flush_interval
    • interval between data flushes (default 0.25)
    • you can set subsecond values such as 0.15 on Fluentd v0.10.42 or later

See Quota policy section in the Google BigQuery document.

Load

<match bigquery>
  type bigquery

  method load
  buffer_type file
  buffer_path bigquery.*.buffer
  flush_interval 1800
  flush_at_shutdown true
  try_flush_interval 1
  utc

  auth_method json_key
  json_key json_key_path.json

  time_format %s
  time_field  time

  project yourproject_id
  dataset yourdataset_id
  auto_create_table true
  table yourtable%{time_slice}
  schema_path bq_schema.json

  request_open_timeout_sec 5m
</match>

I recommend to use file buffer and long flush interval.

Difference with insert method

  • buffer_type
    • default file (it is default of TimeSlicedOutput)
  • buffer_chunk_limit
    • default 1GB
    • the max size is limited to 4GB(compressed) or 5TB (uncompressed) on BigQuery
  • buffer_chunk_records_limit
    • it is available only when buffer_type is lightening
  • buffer_queue_limit
    • default 64
      • Max used storage is buffer_chunk_limit (default 1GB) x buffer_queue_limit (default 64) = 64GB
  • flush_interval
    • default is nil (it is default of TimeSlicedOutput)
  • request_open_timeout_sec
    • If you send large chunk to Bigquery, recommend set long time to request_open_timeout_sec. Otherwise, Timeout error maybe occurs.

Authentication

There are two methods supported to fetch access token for the service account.

  1. Public-Private key pair of GCP(Google Cloud Platform)'s service account
  2. JSON key of GCP(Google Cloud Platform)'s service account
  3. Predefined access token (Compute Engine only)
  4. Google application default credentials (http://goo.gl/IUuyuX)

Public-Private key pair of GCP's service account

The examples above use the first one. You first need to create a service account (client ID), download its private key and deploy the key with fluentd.

JSON key of GCP(Google Cloud Platform)'s service account

You first need to create a service account (client ID), download its JSON key and deploy the key with fluentd.

<match dummy>
  type bigquery
  
  auth_method json_key
  json_key /home/username/.keys/00000000000000000000000000000000-jsonkey.json
  
  project yourproject_id
  dataset yourdataset_id
  table   tablename
  ...
</match>

You can also provide json_key as embedded JSON string like this. You need to only include private_key and client_email key from JSON key file.

<match dummy>
  type bigquery
   
  auth_method json_key
  json_key {"private_key": "-----BEGIN PRIVATE KEY-----\n...", "client_email": "xxx@developer.gserviceaccount.com"}
  
  project yourproject_id
  dataset yourdataset_id
  table   tablename
  ...
</match>

Predefined access token (Compute Engine only)

When you run fluentd on Googlce Compute Engine instance, you don't need to explicitly create a service account for fluentd. In this authentication method, you need to add the API scope "https://www.googleapis.com/auth/bigquery" to the scope list of your Compute Engine instance, then you can configure fluentd like this.

<match dummy>
  type bigquery
  
  auth_method compute_engine
  
  project yourproject_id
  dataset yourdataset_id
  table   tablename
  
  time_format %s
  time_field  time
  
  field_integer time,status,bytes
  field_string  rhost,vhost,path,method,protocol,agent,referer
  field_float   requesttime
  field_boolean bot_access,loginsession
</match>

Application default credentials

The Application Default Credentials provide a simple way to get authorization credentials for use in calling Google APIs, which are described in detail at http://goo.gl/IUuyuX.

In this authentication method, the credentials returned are determined by the environment the code is running in. Conditions are checked in the following order:credentials are get from following order.

  1. The environment variable GOOGLE_APPLICATION_CREDENTIALS is checked. If this variable is specified it should point to a JSON key file that defines the credentials.
  2. The environment variable GOOGLE_PRIVATE_KEY and GOOGLE_CLIENT_EMAIL are checked. If this variables are specified GOOGLE_PRIVATE_KEY should point to private_key, GOOGLE_CLIENT_EMAIL should point to client_email in a JSON key.
  3. Well known path is checked. If file is exists, the file used as a JSON key file. This path is $HOME/.config/gcloud/application_default_credentials.json.
  4. System default path is checked. If file is exists, the file used as a JSON key file. This path is /etc/google/auth/application_default_credentials.json.
  5. If you are running in Google Compute Engine production, the built-in service account associated with the virtual machine instance will be used.
  6. If none of these conditions is true, an error will occur.

Table id formatting

table and tables options accept Time#strftime format to construct table ids. Table ids are formatted at runtime using the local time of the fluentd server.

For example, with the configuration below, data is inserted into tables accesslog_2014_08, accesslog_2014_09 and so on.

<match dummy>
  type bigquery
  
  ...
  
  project yourproject_id
  dataset yourdataset_id
  table   accesslog_%Y_%m
  
  ...
</match>

Note that the timestamp of logs and the date in the table id do not always match, because there is a time lag between collection and transmission of logs.

Or, the options can use %{time_slice} placeholder. %{time_slice} is replaced by formatted time slice key at runtime.

<match dummy>
  type bigquery
  
  ...
  
  project yourproject_id
  dataset yourdataset_id
  table   accesslog%{time_slice}
  
  ...
</match>

Dynamic table creating

When auto_create_table is set to true, try to create the table using BigQuery API when insertion failed with code=404 "Not Found: Table ...". Next retry of insertion is expected to be success.

NOTE: auto_create_table option cannot be used with fetch_schema. You should create the table on ahead to use fetch_schema.

<match dummy>
  type bigquery
  
  ...
  
  auto_create_table true
  table accesslog_%Y_%m
  
  ...
</match>

Table schema

There are three methods to describe the schema of the target table.

  1. List fields in fluent.conf
  2. Load a schema file in JSON.
  3. Fetch a schema using BigQuery API

The examples above use the first method. In this method, you can also specify nested fields by prefixing their belonging record fields.

<match dummy>
  type bigquery
  
  ...
  
  time_format %s
  time_field  time
  
  field_integer time,response.status,response.bytes
  field_string  request.vhost,request.path,request.method,request.protocol,request.agent,request.referer,remote.host,remote.ip,remote.user
  field_float   request.time
  field_boolean request.bot_access,request.loginsession
</match>

This schema accepts structured JSON data like:

{
  "request":{
    "time":1391748126.7000976,
    "vhost":"www.example.com",
    "path":"/",
    "method":"GET",
    "protocol":"HTTP/1.1",
    "agent":"HotJava",
    "bot_access":false
  },
  "remote":{ "ip": "192.0.2.1" },
  "response":{
    "status":200,
    "bytes":1024
  }
}

The second method is to specify a path to a BigQuery schema file instead of listing fields. In this case, your fluent.conf looks like:

<match dummy>
  type bigquery
  
  ...
  
  time_format %s
  time_field  time
  
  schema_path /path/to/httpd.schema
  field_integer time
</match>

where /path/to/httpd.schema is a path to the JSON-encoded schema file which you used for creating the table on BigQuery.

The third method is to set fetch_schema to true to enable fetch a schema using BigQuery API. In this case, your fluent.conf looks like:

<match dummy>
  type bigquery
  
  ...
  
  time_format %s
  time_field  time
  
  fetch_schema true
  field_integer time
</match>

If you specify multiple tables in configuration file, plugin get all schema data from BigQuery and merge it.

NOTE: Since JSON does not define how to encode data of TIMESTAMP type, you are still recommended to specify JSON types for TIMESTAMP fields as "time" field does in the example, if you use second or third method.

Specifying insertId property

BigQuery uses insertId property to detect duplicate insertion requests (see data consistency in Google BigQuery documents). You can set insert_id_field option to specify the field to use as insertId property.

<match dummy>
  type bigquery
  
  ...
  
  insert_id_field uuid
  field_string uuid
</match>

Prevent duplicate load

If you want to detect duplicate load job, you set prevent_duplicate_load to true prevent_duplicate_load makes load job_id consistent. For example, even if fluentd process crashed during waiting for job, fluentd can resume waiting for same job.

<match dummy>
  type bigquery
  
  ...
  
  prevent_duplicate_load true
</match>

job_id is calculated by SHA1. The factors are ...

  • upload source path (file buffer path)
  • dataset
  • table
  • schema
  • max_bad_records
  • ignore_unknown_values

NOTE: Duplicate job error does not invoke flush_secondary. NOTE: This option affects only when use file buffer.

TODO

  • Automatically configured flush/buffer options
  • support optional data fields
  • support NULLABLE/REQUIRED/REPEATED field options in field list style of configuration
  • OAuth installed application credentials support
  • Google API discovery expiration
  • Error classes
  • check row size limits

Authors

  • @tagomoris: First author, original version
  • KAIZEN platform Inc.: Maintener, Since 2014.08.19 (original version)
  • @joker1007 (forked version)