There's a lot of open issues
Rails wrapper for langchainrb gem
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
 Dependencies

Development

~> 3.10.0
~> 0.9.34
> 6.0.0

Runtime

>= 0.7, < 0.17
 Project Readme

💎🔗 Langchain.rb for Rails

The fastest way to sprinkle AI ✨ on top of your Rails app. Add OpenAI-powered question-and-answering in minutes.

Available for paid consulting engagements! Email me.

Tests status Gem Version Docs License X

Dependencies

  • Ruby 3.0+
  • Postgres 11+

Table of Contents

  • Installation
  • Generators

Installation

Install the gem and add to the application's Gemfile by executing:

bundle add langchainrb_rails

If bundler is not being used to manage dependencies, install the gem by executing:

gem install langchainrb_rails

Configuration w/ Pgvector (requires Postgres 11+)

  1. Run the Rails generator to add vectorsearch to your ActiveRecord model
rails generate langchainrb_rails:pgvector --model=Product --llm=openai

This adds required dependencies to your Gemfile, creates the config/initializers/langchainrb_rails.rb initializer file, database migrations, and adds the necessary code to the ActiveRecord model to enable vectorsearch.

  1. Bundle and migrate
bundle install && rails db:migrate
  1. Set the env var OPENAI_API_KEY to your OpenAI API key: https://platform.openai.com/account/api-keys
ENV["OPENAI_API_KEY"]= 
  1. Generate embeddings for your model
Product.embed!

This can take a while depending on the number of database records.

Usage

Question and Answering

Product.ask("list the brands of shoes that are in stock")

Returns a String with a natural language answer. The answer is assembled using the following steps:

  1. An embedding is generated for the passed in question using the selected LLM.
  2. We calculate a cosine similarity to find records that most closely match your question's embedding.
  3. A prompt is created using the question and the above records (their #as_vector representation )are added as context.
  4. This prompt is passed to the LLM to generate an answer

Similarity Search

Product.similarity_search("t-shirt")

Returns ActiveRecord relation that most closely matches the query using vector search.

Customization

Changing the vector representation of a record

By default, embeddings are generated by calling the following method on your model instance:

to_json(except: :embedding)

You can override this by defining an #as_vector method in your model:

def as_vector
  { name: name, description: description, category: category.name, ... }.to_json
end

Re-generate embeddings after modifying this method:

Product.embed!

Rails Generators

Pgvector Generator

rails generate langchainrb_rails:pgvector --model=Product --llm=openai

Pinecone Generator - adds vectorsearch to your ActiveRecord model

rails generate langchainrb_rails:pinecone --model=Product --llm=openai

Qdrant Generator - adds vectorsearch to your ActiveRecord model

rails generate langchainrb_rails:qdrant --model=Product --llm=openai

Available --llm options: cohere, google_palm, hugging_face, llama_cpp, ollama, openai, and replicate. The selected LLM will be used to generate embeddings and completions.

The --model option is used to specify which ActiveRecord model vectorsearch capabilities will be added to.

Pinecone Generator does the following:

  1. Creates the config/initializers/langchainrb_rails.rb initializer file
  2. Adds necessary code to the ActiveRecord model to enable vectorsearch
  3. Adds pinecone gem to the Gemfile

Prompt Generator - adds prompt templating capabilities to your ActiveRecord model

rails generate langchainrb_rails:prompt

This generator adds the following files to your Rails project:

  1. An ActiveRecord Prompt model at app/models/prompt.rb
  2. A rails migration to create the prompts table

You can then use the Prompt model to create and manage prompts for your model.

Example usage:

prompt = Prompt.create!(template: "Tell me a {adjective} joke about {subject}.")
prompt.render(adjective: "funny", subject: "elephants")
# => "Tell me a funny joke about elephants."

Assistant Generator - adds Langchain::Assistant capabilities to your Rails app

This generator adds Langchain::Assistant-related ActiveRecord models, migrations, controllers, views and route to your Rails app. You can start creating assistants and chatting with them in immediately.

rails generate langchainrb_rails:assistant --llm=openai

Available --llm options: anthropic, cohere, google_palm, google_gemini, google_vertex_ai, hugging_face, llama_cpp, mistral_ai, ollama, openai, and replicate. The selected LLM will be used to generate completions.

To remove the generated files, run:

rails destroy langchainrb_rails:assistant