0.01
The project is in a healthy, maintained state
Nearest neighbor search for Ruby and Redis
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
 Dependencies

Runtime

 Project Readme

Neighbor Redis

Nearest neighbor search for Ruby and Redis

Build Status

Installation

First, install RediSearch. With Docker, use:

docker run -p 6379:6379 redis/redis-stack-server

Add this line to your application’s Gemfile:

gem "neighbor-redis"

And set the Redis client:

Neighbor::Redis.client = RedisClient.config.new_pool

Getting Started

Create an index

index = Neighbor::Redis::HNSWIndex.new("items", dimensions: 3, distance: "l2")
index.create

Add items

index.add(1, [1, 1, 1])
index.add(2, [2, 2, 2])
index.add(3, [1, 1, 2])

Note: IDs are stored and returned as strings (uses less total memory)

Get the nearest neighbors to an item

index.nearest(1, count: 5)

Get the nearest neighbors to a vector

index.search([1, 1, 1], count: 5)

Distance

Supported values are:

  • l2
  • inner_product
  • cosine

Index Types

Hierarchical Navigable Small World (HNSW)

Neighbor::Redis::HNSWIndex.new(
  name,
  initial_cap: nil,
  m: 16,
  ef_construction: 200,
  ef_runtime: 10,
  epsilon: 0.01
)

Flat

Neighbor::Redis::FlatIndex.new(
  name,
  initial_cap: nil,
  block_size: 1024
)

Additional Options

Store vectors as double precision (instead of single precision)

Neighbor::Redis::HNSWIndex.new(name, type: "float64")

Store vectors as JSON (instead of a hash/blob)

Neighbor::Redis::HNSWIndex.new(name, redis_type: "json")

Changing Options

Create a new index to change any index options

Neighbor::Redis::HNSWIndex.new("items-v2", **new_options)

Additional Operations

Add multiple items

index.add_all(ids, embeddings)

Get an item

index.find(id)

Remove an item

index.remove(id)

Remove multiple items

index.remove_all(ids)

Drop the index

index.drop

Example

You can use Neighbor Redis for online item-based recommendations with Disco. We’ll use MovieLens data for this example.

Create an index

index = Neighbor::Redis::HNSWIndex.new("movies", dimensions: 20, distance: "cosine")
index.create

Fit the recommender

data = Disco.load_movielens
recommender = Disco::Recommender.new(factors: 20)
recommender.fit(data)

Store the item factors

index.add_all(recommender.item_ids, recommender.item_factors)

And get similar movies

index.nearest("Star Wars (1977)").map { |v| v[:id] }

See the complete code

Reference

History

View the changelog

Contributing

Everyone is encouraged to help improve this project. Here are a few ways you can help:

To get started with development:

git clone https://github.com/ankane/neighbor-redis.git
cd neighbor-redis
bundle install
bundle exec rake test