No release in over a year
Numo::Linalg.randsvd is a module function on Numo::Linalg for truncated singular value decomposition with randomized algorithm.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
 Dependencies

Development

Runtime

 Project Readme

Numo::Linalg.randsvd

Build Status Gem Version BSD 3-Clause License Documentation

Numo::Linalg.randsvd is a module function on Numo::Linalg for truncated singular value decomposition with randomized algorithm. This gem re-implements RandSVD using Numo::NArray and Numo::Linalg instead of NMatrix.

References:

  • P.-G. Martinsson, A. Szlam, M. Tygert, "Normalized power iterations for the computation of SVD," Proc. of NIPS Workshop on Low-Rank Methods for Large-Scale Machine Learning, 2011.
  • P.-G. Martinsson, V. Rokhlin, M. Tygert, "A randomized algorithm for the approximation of matrices," Tech. Rep., 1361, Yale University Department of Computer Science, 2006.

Installation

This gem requires Numo::Linalg, so install numo-linalg or numo-tiny_linalg:

$ gem install numo-linalg

Or:

$ gem install numo-tiny_linalg

Add this line to your application's Gemfile:

gem 'numo-linalg-randsvd'

And then execute:

$ bundle install

Or install it yourself as:

$ gem install numo-linalg-randsvd

Usage

require 'numo/linalg/autoloader'
# # Or
# require 'numo/tiny_linalg'
# Numo::Linalg = Numo::TinyLinalg

require 'numo/linalg/randsvd'

# An example of matrix decomposition is as follows:
x = Numo::DFloat.new(100, 20).rand
y = Numo::DFloat.new(20, 50).rand
z = x.dot(y)
p z
# Numo::DFloat#shape=[100,50]
# ...

# Performing the randomized singular value decomposition with specified the number of singular values.
n_singular_values = 20
s, u, vt = Numo::Linalg.randsvd(z, n_singular_values)
p s
# Numo::DFloat#shape=[20]
# ...
p u
# Numo::DFloat#shape=[100,20]
# ...
p vt
# Numo::DFloat#shape=[20,50]
# ...

# Reconstructing the matrix with the singular values and singular vectors.
zz = u.dot(s.diag).dot(vt)
p zz
# Numo::DFloat#shape=[100,50]
# ...
p (z - zz).abs.max
# 5.5067062021407764e-14

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/yoshoku/numo-linalg-randsvd. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the code of conduct.

License

The gem is available as open source under the terms of the BSD-3-Clause License