0.01
No commit activity in last 3 years
No release in over 3 years
Naive Bayes classifier strategy for OmniCat
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
 Dependencies

Development

~> 1.3
>= 0

Runtime

~> 0.3.0
 Project Readme

OmniCat Bayes

Build Status Code Climate

A Naive Bayes text classification implementation as an OmniCat classifier strategy.

Installation

Add this line to your application's Gemfile:

gem 'omnicat-bayes'

And then execute:

$ bundle

Or install it yourself as:

$ gem install omnicat-bayes

Usage

See rdoc for detailed usage.

Configurations

Optional configuration sample:

OmniCat.configure do |config|
  # you can enable auto train mode by :unique or :continues
  # unique: only uniq docs will be added to training docs on prediction
  # continues: always add docs to training docs on prediction
  config.auto_train = :off
  config.exclude_tokens = ['something', 'anything'] # exclude token list
  config.token_patterns = {
    # exclude tokens with Regex patterns
    minus: [/[\s\t\n\r]+/, /(@[\w\d]+)/],
    # include tokens with Regex patterns
    plus: [/[\p{L}\-0-9]{2,}/, /[\!\?]/, /[\:\)\(\;\-\|]{2,3}/]
  }
end

Bayes classifier

Create a classifier object with Bayes strategy.

# If you need to change strategy on runtime, you should prefer this inialization
bayes = OmniCat::Classifier.new(OmniCat::Classifiers::Bayes.new)

or

# If you only need to use only Bayes classification, then you can use
bayes = OmniCat::Classifiers::Bayes.new

Create categories

Create a classification category.

bayes.add_category('positive')
bayes.add_category('negative')

Train

Train category with a document.

bayes.train('positive', 'great if you are in a slap happy mood .')
bayes.train('negative', 'bad tracking issue')

Untrain

Untrain category with a document.

bayes.untrain('positive', 'great if you are in a slap happy mood .')
bayes.untrain('negative', 'bad tracking issue')

Train batch

Train category with multiple documents.

bayes.train_batch('positive', [
  'a feel-good picture in the best sense of the term...',
  'it is a feel-good movie about which you can actually feel good.',
  'love and money both of them are good choises'
])
bayes.train_batch('negative', [
  'simplistic , silly and tedious .',
  'interesting , but not compelling . ',
  'seems clever but not especially compelling'
])

Untrain batch

Untrain category with multiple documents.

bayes.untrain_batch('positive', [
  'a feel-good picture in the best sense of the term...',
  'it is a feel-good movie about which you can actually feel good.',
  'love and money both of them are good choises'
])
bayes.untrain_batch('negative', [
  'simplistic , silly and tedious .',
  'interesting , but not compelling . ',
  'seems clever but not especially compelling'
])

Classify

Classify a document.

result = bayes.classify('I feel so good and happy')
=> #<OmniCat::Result:0x007febb152af68 @top_score_key="positive", @scores={"positive"=>#<OmniCat::Score:0x007febb152add8 @key="positive", @value=6.813226744186048e-09, @percentage=58>, "negative"=>#<OmniCat::Score:0x007febb152ac70 @key="negative", @value=4.875003449064939e-09, @percentage=42>}, @total_score=1.1688230193250986e-08>
result.to_hash
=> {:top_score_key=>"positive", :scores=>{"positive"=>{:key=>"positive", :value=>6.813226744186048e-09, :percentage=>58}, "negative"=>{:key=>"negative", :value=>4.875003449064939e-09, :percentage=>42}}, :total_score=>1.1688230193250986e-08}
result.top_score
=> #<OmniCat::Score:0x007febb152add8 @key="positive", @value=6.813226744186048e-09, @percentage=58>
result.top_score.to_hash
=> {:key=>"positive", :value=>6.813226744186048e-09, :percentage=>58}

Classify batch

Classify multiple documents at a time.

results = bayes.classify_batch(
  [
    'the movie is silly so not compelling enough',
    'a good piece of work'
  ]
)
=> [#<OmniCat::Result:0x007febb14f3680 @top_score_key="negative", @scores={"positive"=>#<OmniCat::Score:0x007febb14f34a0 @key="positive", @value=7.971480930520432e-14, @percentage=22>, "negative"=>#<OmniCat::Score:0x007febb14f32c0 @key="negative", @value=2.834304330851709e-13, @percentage=78>}, @total_score=3.6314524239037524e-13>, #<OmniCat::Result:0x007febb14f2aa0 @top_score_key="positive", @scores={"positive"=>#<OmniCat::Score:0x007febb14f2960 @key="positive", @value=3.802731206057328e-07, @percentage=72>, "negative"=>#<OmniCat::Score:0x007febb14f2820 @key="negative", @value=1.4625010347194818e-07, @percentage=28>}, @total_score=5.26523224077681e-07>]

Convert to hash

Convert full Bayes object to hash.

# For storing, restoring modal data
bayes_hash = bayes.to_hash
=> {:categories=>{"positive"=>{:doc_count=>4, :docs=>{"28fd29bbf840c86db65e510ff3cd07a9"=>{:content=>"great if you are in a slap happy mood .", :content_md5=>"28fd29bbf840c86db65e510ff3cd07a9", :count=>1, :tokens=>{"great"=>1, "if"=>1, "you"=>1, "are"=>1, "in"=>1, "slap"=>1, "happy"=>1, "mood"=>1}}, "82b4cd9513f448dea0024f2d0e2ccd44"=>{:content=>"a feel-good picture in the best sense of the term...", :content_md5=>"82b4cd9513f448dea0024f2d0e2ccd44", :count=>1, :tokens=>{"feel-good"=>1, "picture"=>1, "in"=>1, "the"=>2, "best"=>1, "sense"=>1, "of"=>1, "term"=>1}}, "f917bf1cf1256c78c5436d850dab3104"=>{:content=>"it is a feel-good movie about which you can actually feel good.", :content_md5=>"f917bf1cf1256c78c5436d850dab3104", :count=>1, :tokens=>{"it"=>1, "is"=>1, "feel-good"=>1, "movie"=>1, "about"=>1, "which"=>1, "you"=>1, "can"=>1, "actually"=>1, "feel"=>1, "good"=>1}}, "4343bbe84c035733708c3f58136f321e"=>{:content=>"love and money both of them are good choises", :content_md5=>"4343bbe84c035733708c3f58136f321e", :count=>1, :tokens=>{"love"=>1, "and"=>1, "money"=>1, "both"=>1, "of"=>1, "them"=>1, "are"=>1, "good"=>1, "choises"=>1}}}, :name=>"positive", :tokens=>{"great"=>1, "if"=>1, "you"=>2, "are"=>2, "in"=>2, "slap"=>1, "happy"=>1, "mood"=>1, "feel-good"=>2, "picture"=>1, "the"=>2, "best"=>1, "sense"=>1, "of"=>2, "term"=>1, "it"=>1, "is"=>1, "movie"=>1, "about"=>1, "which"=>1, "can"=>1, "actually"=>1, "feel"=>1, "good"=>2, "love"=>1, "and"=>1, "money"=>1, "both"=>1, "them"=>1, "choises"=>1}, :token_count=>37, :prior=>0.5}, "negative"=>{:doc_count=>4, :docs=>{"89b36e774579662591ea21b3283d9b35"=>{:content=>"bad tracking issue", :content_md5=>"89b36e774579662591ea21b3283d9b35", :count=>1, :tokens=>{"bad"=>1, "tracking"=>1, "issue"=>1}}, "b0ec48bc87527e285b26d6cce8e278e7"=>{:content=>"simplistic , silly and tedious .", :content_md5=>"b0ec48bc87527e285b26d6cce8e278e7", :count=>1, :tokens=>{"simplistic"=>1, "silly"=>1, "and"=>1, "tedious"=>1}}, "ae9d4fbaf40906614ca712a888648c5f"=>{:content=>"interesting , but not compelling . ", :content_md5=>"ae9d4fbaf40906614ca712a888648c5f", :count=>1, :tokens=>{"interesting"=>1, "but"=>1, "not"=>1, "compelling"=>1}}, "0e495f5d88d8049746a1b6961bf3cc90"=>{:content=>"seems clever but not especially compelling", :content_md5=>"0e495f5d88d8049746a1b6961bf3cc90", :count=>1, :tokens=>{"seems"=>1, "clever"=>1, "but"=>1, "not"=>1, "especially"=>1, "compelling"=>1}}}, :name=>"negative", :tokens=>{"bad"=>1, "tracking"=>1, "issue"=>1, "simplistic"=>1, "silly"=>1, "and"=>1, "tedious"=>1, "interesting"=>1, "but"=>2, "not"=>2, "compelling"=>2, "seems"=>1, "clever"=>1, "especially"=>1}, :token_count=>17, :prior=>0.5}}, :category_count=>2, :category_size_limit=>0, :doc_count=>8, :token_count=>54, :unique_token_count=>43, :k_value=>1.0}

Load from hash

Load full Bayes object from hash.

another_bayes_obj = OmniCat::Classifiers::Bayes.new(bayes_hash)
=> #<OmniCat::Classifiers::Bayes:0x007febb14d15a8 @categories={"positive"=>#<OmniCat::Classifiers::BayesInternals::Category:0x007febb14d1530 @doc_count=4, @docs={"28fd29bbf840c86db65e510ff3cd07a9"=>{:content=>"great if you are in a slap happy mood .", :content_md5=>"28fd29bbf840c86db65e510ff3cd07a9", :count=>1, :tokens=>{"great"=>1, "if"=>1, "you"=>1, "are"=>1, "in"=>1, "slap"=>1, "happy"=>1, "mood"=>1}}, "82b4cd9513f448dea0024f2d0e2ccd44"=>{:content=>"a feel-good picture in the best sense of the term...", :content_md5=>"82b4cd9513f448dea0024f2d0e2ccd44", :count=>1, :tokens=>{"feel-good"=>1, "picture"=>1, "in"=>1, "the"=>2, "best"=>1, "sense"=>1, "of"=>1, "term"=>1}}, "f917bf1cf1256c78c5436d850dab3104"=>{:content=>"it is a feel-good movie about which you can actually feel good.", :content_md5=>"f917bf1cf1256c78c5436d850dab3104", :count=>1, :tokens=>{"it"=>1, "is"=>1, "feel-good"=>1, "movie"=>1, "about"=>1, "which"=>1, "you"=>1, "can"=>1, "actually"=>1, "feel"=>1, "good"=>1}}, "4343bbe84c035733708c3f58136f321e"=>{:content=>"love and money both of them are good choises", :content_md5=>"4343bbe84c035733708c3f58136f321e", :count=>1, :tokens=>{"love"=>1, "and"=>1, "money"=>1, "both"=>1, "of"=>1, "them"=>1, "are"=>1, "good"=>1, "choises"=>1}}}, @name="positive", @tokens={"great"=>1, "if"=>1, "you"=>2, "are"=>2, "in"=>2, "slap"=>1, "happy"=>1, "mood"=>1, "feel-good"=>2, "picture"=>1, "the"=>2, "best"=>1, "sense"=>1, "of"=>2, "term"=>1, "it"=>1, "is"=>1, "movie"=>1, "about"=>1, "which"=>1, "can"=>1, "actually"=>1, "feel"=>1, "good"=>2, "love"=>1, "and"=>1, "money"=>1, "both"=>1, "them"=>1, "choises"=>1}, @token_count=37, @prior=0.5>, "negative"=>#<OmniCat::Classifiers::BayesInternals::Category:0x007febb14d14e0 @doc_count=4, @docs={"89b36e774579662591ea21b3283d9b35"=>{:content=>"bad tracking issue", :content_md5=>"89b36e774579662591ea21b3283d9b35", :count=>1, :tokens=>{"bad"=>1, "tracking"=>1, "issue"=>1}}, "b0ec48bc87527e285b26d6cce8e278e7"=>{:content=>"simplistic , silly and tedious .", :content_md5=>"b0ec48bc87527e285b26d6cce8e278e7", :count=>1, :tokens=>{"simplistic"=>1, "silly"=>1, "and"=>1, "tedious"=>1}}, "ae9d4fbaf40906614ca712a888648c5f"=>{:content=>"interesting , but not compelling . ", :content_md5=>"ae9d4fbaf40906614ca712a888648c5f", :count=>1, :tokens=>{"interesting"=>1, "but"=>1, "not"=>1, "compelling"=>1}}, "0e495f5d88d8049746a1b6961bf3cc90"=>{:content=>"seems clever but not especially compelling", :content_md5=>"0e495f5d88d8049746a1b6961bf3cc90", :count=>1, :tokens=>{"seems"=>1, "clever"=>1, "but"=>1, "not"=>1, "especially"=>1, "compelling"=>1}}}, @name="negative", @tokens={"bad"=>1, "tracking"=>1, "issue"=>1, "simplistic"=>1, "silly"=>1, "and"=>1, "tedious"=>1, "interesting"=>1, "but"=>2, "not"=>2, "compelling"=>2, "seems"=>1, "clever"=>1, "especially"=>1}, @token_count=17, @prior=0.5>}, @category_count=2, @category_size_limit=0, @doc_count=8, @token_count=54, @unique_token_count=43, @k_value=1.0>
another_bayes_obj.classify('best senses')
=> #<OmniCat::Result:0x007febb14c0fc8 @top_score_key="positive", @scores={"positive"=>#<OmniCat::Score:0x007febb14c0ed8 @key="positive", @value=0.00029069767441860465, @percentage=52>, "negative"=>#<OmniCat::Score:0x007febb14c0de8 @key="negative", @value=0.0002704164413196322, @percentage=48>}, @total_score=0.0005611141157382368>

Best practices

For bayes classification always try to train same amount of documents for each category. So, do not activate auto training mode, because it make overages on balance of trained docs and makes algorithm go crazy :). To get best results on text classification you should apply some cleaning actions like spellchecking, stemming, stop words cleaning before training and prediction actions.

Contributing

  1. Fork it
  2. Create your feature branch (git checkout -b my-new-feature)
  3. Commit your changes (git commit -am 'Add some feature')
  4. Push to the branch (git push origin my-new-feature)
  5. Create new Pull Request

Copyright

Copyright © 2013 Mustafa Turan. See LICENSE for details.