Project

packaging

0.14
A long-lived project that still receives updates
Packaging automation for Puppet FOSS projects
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
 Dependencies

Development

>= 0
>= 1.0.0

Runtime

 Project Readme

Packaging

This is a repository for packaging automation for Puppet software. The goal is to abstract and automate packaging processes beyond individual software projects to a level where this repo can be cloned inside any project and used to build Debian and Redhat packages, as well as gems, apple packages and tarballs. This repo is currently under heavy development and in a state flux, and it should not be considered to have a formal API. However, every effort is being made to ensure existing tasks/behavior are not broken as we continue to iterate and improve upon it.

Getting Started

As a developer, you can get started working on this by typing:

bundle install
bundle exec rspec

Using the Packaging Repo

Several Puppet projects are using the packaging repo. They are:

  • puppet
  • facter
  • puppet-dashboard
  • hiera
  • puppetdb
  • razor

as well as several closed-source projects, including

  • live-management
  • console-auth
  • console

Generally speaking, the packaging repo should be compatible with ruby >= 2.0.0 rake ~> 12.3. To pull the packaging tasks into your source repo, do a bundle install. This will install the packaging gem and all its dependencies. Packaging's rake tasks will be made available by running any rake command, e.g. bundle exec rake -T. The tasks are generally grouped into two categories, package: namespaced tasks and pl: namespaced tasks.

package: tasks

package: namespaced tasks are general purpose tasks that are set up to use the most minimal tool chain possible for creating packages. These tasks will create rpms and debs, but any build dependencies will need to be satisifed by the building host, and any dynamically generated dependencies may result in packages that are only suitable for the OS/version of the build host. However, for rolling one's own debs and rpms or for use in environments without many OSes/versions, this may work just fine. To build an rpm using the packaging repo, do a bundle exec rake package:rpm. To build a deb, use bundle exec rake package:deb.

pl: tasks

pl: namespaced tasks rely on a slighly more complex toolchain for packaging inside clean chroot environments for the various operating systems and versions that Puppet supports. On the rpm side, this is done with mock and for debs, we use pdebuild and cowbuilder. For the most part, these tasks are keyed to puppet infrastructure, and are used by the Release Engineering team to create release packages. However, they can certainly be modified to suit other environments, and much effort went into making tasks as modular and reusable as possible. Several Puppet-specific tasks are only available if the file '~/.packaging' is present. This file is created by the pl:fetch task, which curls two yaml files into 'team' and 'project' subdirectories from a separate build data repository, which contains additional settings/data specific to Puppet release infrastructure. By default, the team data file is pulled from the 'dev' branch of the repo, and the project data file is pulled from a branch named after the project (e.g. for puppet, there is a branch named puppet with a build data file). The goal in separating these data and tasks out is to refrain from presenting by default yet more Puppet-specific tasks that aren't generally consumable by everyone. To build a deb from a local repository using a pl task, ssh into a builder (e.g., one stood up using the modules detailed below) and clone the source repo, e.g. puppet. Then, run bundle install and bundle exec rake pl:deb to create a deb, and bundle exec rake pl:mock to make an rpm (on a debian or redhat host, respectively).

pe: tasks

There is also a pe: namespace, for the building of Puppet Labs' Puppet Enterprise packages that have been converted to using this repo. The pe: tasks rely heavily on PL internal infrastructure, and are not generally useful outside of this environment. To create packages, in the source repository run bundle install, followed by bundle exec rake pl:fetch. These two commands install the packaging gem and pull in the additional data needed for PE building (see pl:fetch notes above). Then, to make a debian package, run bundle exec rake pe:deb, and to make an rpm, run bundle exec rake pe:mock. There are also pe:deb_all and pe:mock_all tasks, which build packages against all shipped debian/redhat targets. The pe:deb_all task is not generally necessary for developer use for building test packages; the pe:deb task creates a package that will work against virtually all supported PE debian versions. The same is generally true for PE internal rpms, but because of variances in build macros for rpm, rpms should generally be built with pe:mock_all, and then the desired version installed, or by building only for a specific target. This is accomplished by passing MOCK= to the rake call, e.g. bundle exec rake pe:mock MOCK=<mock>. The available mocks are listed in ext/build_defaults.yaml after final_mocks:. For PE, the mocks are formatted as pupent-<peversion>-<distversion>-<arch>, e.g. pupent-2.7-el5-i386. To build for a specific target, set MOCK=<mock> to the mock that matches the target.

:remote: tasks

There are also sub-namespaces of :pl and :pe that are worth noting. First, the :remote namespace. Tasks under :remote perform builds remotely on internal builders from your local workstation. How they work:

  1. Run bundle install to install the packaging gem and its dependencies.

  2. Run bundle exec pl:fetch to obtain extra data from the build-data repo. The data includes the hostnames of builders to use for packaging.

  3. Create a git bundle of the local workspace and tar it up.

  4. Create a build parameters file. The params file includes all the information about the build, including any values overridden with env vars, and the actual task to run, e.g. bundle exec rake pl:deb.

  5. scp the git bundle and build parameters file to a temporary directory on the builder hostname assigned to that particular package build type.

  6. ssh into the builder, untar the git bundle, clone it, and run bundle install.

  7. ssh into the builder, cd into the cloned repo, and run bundle exec rake pl:build_from_params PARAMS_FILE=/path/to/previously/sent/file.

  8. Maintain the ssh connection until the build finishes, and rsync the packages from the builder to the local workstation.

Note that these tasks require ssh access to the builder hosts that are specified in the build-data file, and appropriate membership in the build groups, e.g. to use mock on the builder, membership in the mock group. This is a major hurdle, and is resolved with the jenkins tasks below.

legacy :jenkins: workflow tasks

(Deprecated - see "dynamic jenkins task workflow" below) Jenkins tasks are similar to the :remote: tasks, but they do not require ssh access to the builders. They do require being on the local network - the jenkins instance that performs package builds is an internal server only, accessible when connected via VPN or on-site. The jenkins tasks enable the packaging repo to kick off packaging builds on a remote jenkins slave. There are two workflows of jenkins tasks in the packaging repo. The first workflow, which is used for creating individual platform packages on jenkins (e.g. creating a deb with pl:jenkins:deb) relies on a job that exists on a remote jenkins server. The tasks transmit information to the jenkins job, which handles the rest. The data passed are the following:

  1. $PROJECT_BUNDLE - a tar.gz of a git-bundle from HEAD of the current project, which is cloned on the builder to set up a duplicate of this environment

  2. $BUILD_PROPERTIES - a build parameters file, containing all information about the build

  3. $BUILD_TYPE - the "type" of build, e.g. rpm, deb, gem, etc The jenkins url and job name are obtained via the team build-data file from the build data repository

  4. $PROJECT - the project we're building, e.g. facter, puppet. This is used later in determining the target for the build artifacts on the distribution server

  5. $METRICS - a string of data points related to the build which are used for data analysis. Contents of this string are items which cannot be obtained from within the Jenkins job itself.

  6. $DOWNSTREAM_JOB - The URL of a downstream job that jenkins should post to upon success. This is obtained via the DOWNSTREAM_JOB environment variable.

On the Jenkins end, the job is a parameterized job that accepts five parameters. Jenkins has the Parameterized Trigger Plugin, Workspace Cleanup Plugin, and Node and Label Parameter Plugin in use for this job. The workspace cleanup plugin cleans the workspace before each build. Two are file parameters, two string parameters, and a Label parameter provided by the Node and Label Parameter Plugin, as described above. When the pl:jenkins:* task triggers a build, it passes values for all of these parameters. The Label parameter is associated with the build type. This way we can queue the job on a builder with the appropriate capabilities just by assigning a builder the label "deb" or "rpm," etc. The job allows parallel execution of jobs - in this way, we can queue many package jobs on the jenkins instance, which will farm them out to builders that are slaves of that jenkins instance. This also allows us to scale building capacity simply by adding builders as slaves to the jenkins instance. The actual build itself is accomplished via a shell build task. The contents of the task are:

#################

  SHA=$(echo $BUILD_PROPERTIES | cut -d '.' -f1)

  echo "Build type: $BUILD_TYPE"

 ### Create a local clone of the git-bundle that was passed
 # The bundle is a tarball, and since this is a project-agnostic
 # job, we don't actually know what's in it, just that it's a
 # git bundle.

  [ -f "PROJECT_BUNDLE" ] || exit 1
  mkdir project && tar -xzf PROJECT_BUNDLE -C project/

  cd project
    git clone --recursive $(ls) git_repo

    cd git_repo

      ### Install the packaging gem via Bundler
      bundle install && bundle exec rake pl:fetch

      ### Perform the build
      bundle exec rake pl:load_extras pl:build_from_params PARAMS_FILE=$WORKSPACE/BUILD_PROPERTIES

      ### Send the results
      bundle exec rake pl:jenkins:ship["artifacts"]

      ### If a downstream job was passed, trigger it now
      if [ -n "$DOWNSTREAM_JOB" ] ; then
        bundle exec rake pl:jenkins:post["$DOWNSTREAM_JOB"]
      fi

#################

To gather metrics related to a Jenkins build, the Groovy Postbuild plugin is used. For tasks carried out on the static Jenkins job, the script must be manually added to the job's configuration. The script in its entirety can be seen here.

dynamic :jenkins: task workflow

The recommended and far simpler jenkins-based workflow is for initiating the "uber_build", or a package build for all of our target platforms.

The uber_build is invoked as "pl:jenkins:uber_build" or "pe:jenkins:uber_build" depending on if this is a FOSS or PE package.

This workflow doesn't actually use a static job on the jenkins-server. Instead it creates the jenkins jobs for you, on-demand. Specifically, it creates two jenkins-jobs, and can create an optional third.

The first job is a matrix job, the cells of which are individual package tasks for all of the build targets. This job takes four parameters:

  1. $PROJECT_BUNDLE - a tar.gz of a git-bundle from HEAD of the current project, which is cloned on the builder to set up a duplicate of this environment

  2. $BUILD_PROPERTIES - a build parameters file, containing all information about the build

  3. $PROJECT - the project we're building, e.g. facter, puppet. This is used later in determining the target for the build artifacts on the distribution server

  4. $METRICS - a string of data points related to the build which are used for data analysis. Contents of this string are items which cannot be obtained from within the Jenkins job itself. Note that the Groovy postbuild script needed for metrics gathering is dynamically passed to each job.

This first job clones the git bundle passed in as a parameter, then installs the packaging gem (bundle install) and for every cell in its matrix performs a package build for a specific target (e.g. bundle exec rake pl:deb COW=base-lucid-i386.cow). Once all cells in the matrix complete (either succeed or fail), this job automatically triggers the second of the new jobs as a downstream job.

To receive an email notification from jenkins about the status of the packaging job, pass NOTIFY= as an environment variable to the uber_build invocation, e.g.:

bundle exec rake pl:jenkins:uber_build NOTIFY="foo@puppet.com bar@puppet.com"

The second job is an automatic repository creation task for this git repo. Specifically, the job copies the git bundle from the packaging job and clones it, and uses the git information in the git bundle to clone the packaging repo and invoke the repository creation jobs pl:jenkins:rpm_repos and pl:jenkins:deb_repos. The job will always be invoked, but will only actually create repos if the upstream packaging job actually succeeded.

The third job is only created if the environment variable DOWNSTREAM_JOB=<job_url> was passed to the initial "pl:jenkins:uber_build" invocation. This third job takes the value assigned to DOWNSTREAM_JOB and creates a proxy jenkins job with a single build step, a curl call to this value, presumably a url to a jenkins job to trigger programmatically.

An important note about DOWNSTREAM_JOB: DOWNSTREAM_JOB in the dynamic jenkins workflow is always invoked if it is passed in as an environment variable. However, it is appended with an additional parameter, PACKAGE_BUILD_STATUS, which will be the string "success" if package and repo builds succeeded, or "failure" if package or repo builds failed. By modifying the actual downstream jenkins job to accept a string parameter of PACKAGE_BUILD_STATUS, one can switch on the success or failure of the packaging job, responding appropriately. A second parameter, PACKAGE_BUILD_URL is also appended to DOWNSTREAM_JOB, the value of which is the url of the packaging job itself. This is to assist with tracing failures in a multi-jenkins environment. By modifying the downstream jenkins job to accept a string parameter of PACKAGE_BUILD_URL, one can use the value to display the url prominently in case of failure, for example.

E.g., a job url: http://jenkins.example.net/job/downstream/buildWithParameters?FOO=bar

in the success case will be transformed into

http://jenkins.example.net/job/downstream/buildWithParameters?FOO=bar&PACKAGE_BUILD_STATUS=success&PACKAGE_BUILD_URL=http://jenkins.example.net/job/packaging_job

and in the failure case transformed into

http://jenkins.example.net/job/downstream/buildWithParameters?FOO=bar&PACKAGE_BUILD_STATUS=failure&PACKAGE_BUILD_URL=http://jenkins.example.net/job/packaging_job

Since jenkins will just drop parameters that are not configured in the job, accepting PACKAGE_BUILD_STATUS and PACKAGE_BUILD_URL in the downstream job isn't mandatory.

All 3 jobs are configured by default for removal by jenkins after 3 days, to avoid clutter.

The goal is to move toward migrating all of the jenkins tasks from the first workflow, using a static job that is called many times per package, to this second workflow of creating the jobs on demand.

Polling behavior with pl:jenkins:uber_build:

It is possible to pass an integer argument to the uber_build task which will be used by the job as polling interval. If this value is passed in, the task will query the dynamic job using the Jenkins API periodically until the build is finished. Then, it will query the build to determine the SUCCESS/FAILURE status. The job output will look something like:

Packaging SUCCESS
Repo SUCCESS

If for example the Packaging job had failed the output would look like this:

Packaging FAILURE

If a build fails then the rake task will terminate with a nonzero exit status which can be used during CI or other automated contexts to detect and act on the failure. This eliminates the need to pass a DOWNSTREAM_JOB variable to the uber_build job although it is still possible to do so.

Task Explanations

For a listing of all available tasks and their functions, see the Task Dictionary at the end of this README.

Modules

A puppet module, puppetlabs-debbuilder, has been created to stand up a debian build host compatible with the debian side of this packaging repo. The rpm-side module, puppetlabs-rpmbuilder, will set up an rpm builder.

##Setting up projects for the Packaging Repo

The packaging repo requires many project-side artifacts inside the ext directory at the top level. facter and hiera are good examples. It expects the following directory structure in the project

  • ext/{debian,redhat,osx}

each of which contains templated erb files using the instance variables specified in the setupvars task. These include a debian changelog, a redhat spec file, and an osx preflight and plist.

The top level Rakefile or a separate task file in the project should have the following added:

require 'packaging'
Pkg::Util::RakeUtils.load_packaging_tasks

Also in ext should be two files, build_defaults.yaml and project_data.yaml (optional).

This is the sample build_defaults.yaml file from Hiera:

---
packaging_url: 'git@github.com:puppetlabs/packaging --branch=master'
packaging_repo: 'packaging'
default_cow: 'base-squeeze-i386.cow'
# Which debian distributions to build for. Noarch packages only need one arch of each cow.
cows: 'base-lucid-amd64.cow base-lucid-i386.cow base-natty-amd64.cow base-natty-i386.cow base-oneiric-amd64.cow base-oneiric-i386.cow base-precise-amd64.cow base-precise-i386.cow base-sid-amd64.cow base-sid-i386.cow base-squeeze-amd64.cow base-squeeze-i386.cow base-testing-amd64.cow base-testing-i386.cow base-wheezy-i386.cow'
# The pbuilder configuration file to use
pbuild_conf: '/etc/pbuilderrc'
# Alternate debian mirrors to build against (must be an array)
# The __DIST__ string is automatically replaced with codename of the cow being built, so when the squeeze cow is being built the deb_build_mirrors will be:
# deb http://apt.puppetlabs.com squeeze main dependencies
# deb http://somethingelse.com/debian squeeze
# This will happen for each cow during the build.
deb_build_mirrors:
  - deb http://apt.puppetlabs.com __DIST__ main dependencies
  - deb http://somethingelse.com/debian __DIST__
# Who is packaging. Turns up in various packaging artifacts
packager: 'puppetlabs'
# GPG key ID of the signer
gpg_key: '4528B6CD9E61EF26'
# Whether to require tarball signing as a prerequisite of other package building
sign_tar: false
# a space separated list of mock configs. These are the rpm distributions to package for. If a noarch package, only one arch of each is needed.
final_mocks: 'pl-el-5-i386 pl-el-5-x86_64 pl-el-6-i386 pl-el-6-x86_64 pl-fedora-16-i386 pl-fedora-16-x86_64 pl-fedora-17-i386 pl-fedora-17-x86_64'
# The host that contains the yum repository to ship to
yum_host: 'yum.puppetlabs.com'
# The remote path the repository on the yum\_host
yum_repo_path: '/some/repo/'
# The host that contains the apt repository to ship to
apt_host: 'apt.puppetlabs.com'
# The URL to use for the apt dependencies in cow building
apt_repo_url: 'http://apt.puppetlabs.com'
# The path on the remote apt host that debs should ship to
apt_repo_path: '/opt/repository/incoming'
# The host that stores the tarballs for downloading
tar_host: 'downloads.puppetlabs.com'
# Whether to present the gem and apple tasks
build_gem: true
build_dmg: true
# Whether to execute the rdoc rake tasks prior to composing the tarball
build_doc: false
# Whether to kick of a dynamic msi build job along side the uber_build
# If present, a dynamically generated jenkins job will be kicked off.
# The automation in puppet_for_the_win is used to build the msi with the
# following components.
build_msi:
  puppet_for_the_win:
    ref: 'origin/master'
    repo: 'https://github.com/puppetlabs/puppet_for_the_win.git'
  facter:
    ref: 'refs/tags/2.1.0'
    repo: 'https://github.com/puppetlabs/facter.git'
  hiera:
    ref: 'refs/tags/1.3.4'
    repo: 'https://github.com/puppetlabs/hiera.git'
  sys:
    ref:
      x86: 'origin/1.9.3-x86'
      x64: 'origin/2.0.0-x64'
    repo: 'https://github.com/puppetlabs/puppet-win32-ruby.git'
# Whether to present the Solaris 11 IPS packaging tasks
# This requires suitable IPS packaging artifacts in the project in ext/ips
build_ips: false
# Whether this project is a PE project or not
build_pe: false
# An optional task to execute pre-tarball composition. See the tasks in
# the 'pretasks' directory
pre_tar_task: 'package:vendor_gems'

This is the sample project_data.yaml file:

---
project: 'hiera'
author: 'Puppet'
email: 'info@puppet.com'
homepage: 'https://github.com/puppetlabs/hiera'
summary: 'Light weight hierarchical data store'
description: 'A pluggable data store for hierarchical data'
# file containing hard coded version information, if present
version_file: '/lib/hiera.rb'
# A string indicating the version strategy for the project (one of 'odd_even' or 'rc_final'), defaults to rc_final
# odd_even is a final release when the minor version is even, and a development release when it is odd
# rc_final is a final release when there is no rc at the end of the version string, and a development release when there is
version_strategy: 'rc_final'
# Boolean value of whether or not to automatically update the version file before packaging (defaults to false)
update_version_file: true
# files and gem\_files are space separated lists
# files to be packaged into a tarball and released with deb/rpm
files: '[A-Z]* ext lib bin spec acceptance_tests'
# space separated list of files to *exclude* from the tarball
# note that each listing in files, above, is recursively copied into the tarball, so
# 'tar\_excludes' only needs to include any undesired subdirectories/files of the 'files'
# list to exclude
tar_excludes: 'ext/packaging lib/some_excluded_file'
# Array of templates or globs of templates to evaluate. Note that without this key, the packaging will
# default to searching for any files in `ext` with the extension '.erb' and evaluate them. When this
# key is supplied, its values override the defaults, and all desired erb files must be specified with a path or glob.
templates:
  - ext/redhat/project.spec.erb
  - ext/templates/**/*.erb
# files to be packaged into a gem
gem_files: '{bin,lib}/**/* CHANGELOG COPYING README.md LICENSE'
# To exclude specific files from inclusion in a gem:
gem_excludes: 'lib/hiera/file_to_exclude.rb lib/hiera/directory_to_exclude'
# If gem name differs in some way from project name, e.g. only build gem for a client end
gem_name: hiera_the_gem
# If gem summary and/or description differs from general summary
gem_summary: 'A sub-set of the Hiera pluggable data store'
gem_description: 'A gem of the pluggable data store for hierarchical data'
gem_require_path: 'lib'
gem_test_files: 'spec/**/*'
gem_executables: 'hiera'
gem_default_executables: 'hiera'
# To add gem dependencies, indent.
# This is an example only, hiera doesn't really depend on hiera-puppet/json/facter
# For no specific version, leave version empty
gem_runtime_dependencies:
  hiera-puppet: '1.0.0rc'
  hiera-json:
gem_development_dependencies:
  facter: '>= 1.6.11'
# To add gem dependencies which only apply to a specific platform, add the key "gem_platform_dependencies".
# The first key under the gem_platform_dependencies has to be a value that
# corresponds to a value of RUBY_PLATFORM. The subkeys are the same as the
# top-level gem dependency keys:
gem_platform_dependencies:
  x86-mingw32:
    gem_runtime_dependencies:
      win32process: '~> 0.6.5'
    gem_development_dependencies:
      rake: '~> 0.9.0'
  x86_64-darwin:
    gem_runtime_dependencies:
      CFPropertyList: '~> 2.2.4'
# rdoc options as an array
gem_rdoc_options:
  - --line-numbers
  - --main
  - Hiera.README

For basic mac packaging, add an osx directory in ext containing the following files:

  1. a preflight.erb template for any pre-flight actions, perhaps removing the old package if present.
  2. a prototype.plist.erb that is templated into the pkginfo.plist file for the package. This is the one from puppet. Note that these variable names aren't mutable here, but there's no need to worry about their value assignment, it's done in the apple task:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
  <key>CFBundleIdentifier</key>
  <string><%= @title %></string>
  <key>CFBundleShortVersionString</key>
  <string><%= @version %></string>
  <key>IFMajorVersion</key>
  <integer><%= @package_major_version %></integer>
  <key>IFMinorVersion</key>
  <integer><%= @package_minor_version %></integer>
  <key>IFPkgBuildDate</key>
  <date><%= @build_date %></date>
  <key>IFPkgFlagAllowBackRev</key>
  <false/>
  <key>IFPkgFlagAuthorizationAction</key>
  <string>RootAuthorization</string>
  <key>IFPkgFlagDefaultLocation</key>
  <string>/</string>
  <key>IFPkgFlagFollowLinks</key>
  <true/>
  <key>IFPkgFlagInstallFat</key>
  <false/>
  <key>IFPkgFlagIsRequired</key>
  <false/>
  <key>IFPkgFlagOverwritePermissions</key>
  <false/>
  <key>IFPkgFlagRelocatable</key>
  <false/>
  <key>IFPkgFlagRestartAction</key>
  <string><%= @pm_restart %></string>
  <key>IFPkgFlagRootVolumeOnly</key>
  <true/>
  <key>IFPkgFlagUpdateInstalledLanguages</key>
  <false/>
</dict>
</plist>

A file_mapping.yaml file that specifies a set of files and a set of directories from the source to install, with destinations, ownership, and permissions. The directories are top level directories in the source to install. The files are files somewhere in the source to install. This is the one from puppet 3.x:

---
directories:
# this will take the contents of lib, e.g. puppet/lib/\* and place them in
# /usr/lib/ruby/site\_ruby/1.8
  lib:
    path: 'usr/lib/ruby/site_ruby/1.8'
    owner: 'root'
    group: 'wheel'
    perms: '0644'
  bin:
    path: 'usr/bin'
    owner: 'root'
    group: 'wheel'
    perms: '0755'
  'man/man8':
    path: 'usr/share/man/man8'
    owner: 'root'
    group: 'wheel'
    perms: '0755'
files:
# this will take the file puppet/conf/auth.conf and place it in
# /private/etc/puppet/, creating the directory if not present
  'conf/auth.conf':
    path: 'private/etc/puppet'
    owner: 'root'
    group: 'wheel'
    perms: '0644'
  'man/man5/puppet.conf.5':
    path: 'usr/share/man/man5'
    owner: 'root'
    group: 'wheel'
    perms: '0644'
  '[A-Z]*':
    path: 'usr/share/doc/puppet'
    owner: 'root'
    group: 'wheel'
    perms: '0644'

Task Dictionary

  • package:apple

    Use PackageMaker to create a pkg package inside a dmg. Requires 'sudo' privileges. build_dmg: true must be set in ext/build_defaults.yaml. Packages are staged in ./pkg/apple. See the Mac packaging section of Setting up projects for the Packaging Repo.

  • package:deb

    Use debbuild to create a deb package and associated debian package artifacts from the repository. Requires all build dependencies be satisfied locally. Packages are staged in ./pkg/deb.

  • package:gem Use the rubygems/package_task library to create a rubygem from the repository. Requires build_gem: true and gem-related parameters be set in ext/build_defaults.yaml and ext/project\_data.yaml. The gem is staged in ./pkg.

  • package:ips

    Use Solaris 11 pkg* tools to create a IPS package from the project. Packages are staged in ./pkg/ips/pkgs. Requires all pkg, pkgdepend, pkgsend, pkglint, and pkgmogrify. Currently only puppet, facter, and hiera have this capability.

  • package:rpm

    Use rpmbuild to create an rpm of the project. This will also make a source rpm. Requires all build dependencies by satisfied locally. Packages are staged in ./pkg/rpm.

  • package:srpm

    Use rpmbuild to create a source rpm of the project. Source rpm is staged in ./pkg/srpm.

  • package:tar

    Create a source tarball of the project. The tarball is staged in ./pkg.

  • package:update

    Update the clone of the packaging repo by pulling from origin.

  • pl:build_from_params

    Invoke a build from a build parameters yaml file. The parameters file should be created with bundle exec rake pl:write_build_params. The settings in the build parameters file will override all values contained in ./ext/build_defaults.yaml and ./ext/project_data.yaml.

  • pl:deb

    Use pdebuild with cowbuilder to create a debian package and associated source artifacts from the default "cow", currently Debian Squeeze i386. Requires that pbuilder/cowbuilder be installed and set up with a Debian Squeeze cow. See the puppetlabs-debbuilder module for an easy way to set up a host for building with cows. The deb and source artifacts are staged in ./pkg/deb/squeeze.

  • pl:deb_all*

    The same as bundle exec rake pl:deb, but a package is built for every cow listed in ext/build_defaults.yaml on the line cows:<cows>. The packages and associated source artifacts are staged in ./pkg/deb/$distribution, where $distribution is the Debian/Ubuntu codename of the cow that was used to build the package, e.g. "wheezy" or "precise."

  • pl:ips

    Invoke package:ips, but do so after pl:fetch and pl:load_extras, which load signing/certificate information. The resulting packages are signed. IPS packages are staged in ./pkg/ips/pkgs

  • pl:jenkins:deb

    Perform pl:deb by posting a jenkins build, as described above. Once the build is complete, run pl:jenkins:retrieve to retrieve the built packages.

  • pl:jenkins:deb_all

    Perform what is a effectively a pl:deb_all but in a different fashion. pl:deb_all performs debian cow builds in serial with every cow listed in ext/build_defaults.yaml. pl:jenkins:deb_all splits the cows listed, and posts a separate pl:jenkins:deb job for every cow listed to the jenkins server, allowing jenkins to parallelize the building of packages for every cow. Execute pl:jenkins:retrieve to retrieve all packages.

  • pl:jenkins:deb_repo_configs

    On the distribution server generate a listing of all debian repositories that exist for the current SHA/ref of HEAD of the project repository. Then generate debian apt client configuration files for every existing repository. The distribution server is a web server, so the client configurations can be placed on a debian client in /etc/apt/sources.list.d/ and the client will be able to install the built packages via apt. Requires SSH access to the distribution server.

  • pl:jenkins:deb_repos

    On the distribution server, generate debian apt repositories for every distribution containing any packages that are stored that match the current SHA/ref of HEAD of the project repository. Requires SSH access to the distribution server.

  • pl:jenkins:dmg

    Perform package:apple by posting a jenkins build. Run pl:jenkins:retrieve to retrieve the built packages.

  • pl:jenkins:gem

    Perform package:gem by posting a jenkins build. Run pl:jenkins:retrieve to retrieve the built packages.

  • pl:jenkins:mock

    Perform pl:mock by posting a jenkins build. Run pl:jenkins:retrieve to retrieve the built packages.

  • pl:jenkins:mock_all

    Perform what is effectively a pl:mock_all but in a different fashion. pl:mock_all performs mock builds in serial with every mock listed in ext/build_defaults.yaml. pl:jenkins:mock_all splits the mocks listed, and posts a separate pl:jenkins:mock job for every mock to the jenkins server, allowing jenkins to parallelize the building of packages for every mock configuration. The mock build root is randomized by the packaging repo, avoiding conflicts with existing builds of the same mock configuration. To retrieve built packages, call pl:jenkins:retrieve.

  • pl:jenkins:post[uri]

    Post to the jenkins server as specified in the team build_extras.yaml file, with the job uri specified.

  • pl:jenkins:retrieve[target]

    Retrieve packages stored on the distribution server that have been built from the current SHA/ref of HEAD of the project repository. Optionally pass [target] to override the default, which is to retrieve the contents of the "artifacts" subdirectory. Other targets are "repos" and "shipped".

  • pl:jenkins:rpm_repo_configs

    On the distribution server generate a listing of all yum rpm package repositories that exist for the current SHA/ref of HEAD of the project repository. Then generate yum client configuration files for every existing repository. The distribution server is a web server, so the client configurations can be placed on a redhat client in /etc/yum.repos.d/ and the client will be able to install the packages via yum install. Requires SSH access to the distribution server.

  • pl:jenkins:rpm_repos

    On the distribution server, generate yum rpm repositories for every distribution containing any packages that are stored that match the current SHA/ref of HEAD of the project repository. Requires SSH access to the distribution server. The yum repos are created in a "repos" subdirectory of the standard builds location, e.g. /opt/jenkins-builds/$project/${SHA|ref}/repos, using everything currently in the "artifacts" subdirectory of the same location.

  • pl:jenkins:ship[target]

    Take the packages staged in pkg/ and ship them to locations partially specified by data in the project build_extras.yaml file. The current paradigm is to ship the files to a subdirectory of /opt/jenkins-builds on the distribution server. The subdirectory is constructed with the project and SHA or ref of HEAD of the project repository. That is, if project HEAD is currently at the tag "1.2.3", then the directory that packages will be shipped to is /opt/jenkins-builds/$project/1.2.3/. If HEAD is a git SHA, then "1.2.3" will instead be that SHA. By default, all artifacts in pkg/ will be shipped to a "artifacts" subdirectory of the standard target. E.g. /opt/jenkins-builds/$project/1.2.3/artifacts. When a final shipping occurs, e.g. when shipping signed artifacts into production, a second subdirectory is created - "shipped" - and all artifacts that are shipped to production are also shipped here. This allows a historical archive of all shipped artifacts.

  • pl:jenkins:sign_all

    Take all packages staged in pkg/ and sign them via the various signing tasks. All signing occurs on the distribution server:

    • create a git-bundle of the project and rsync it to the distribution
    • server ssh to the distribution server and clone the git-bundle, and clone
    • the packaging repository rsync the contents of the local pkg/ directory
    • into the pkg/ directory of the remote git project ssh to the distribution
    • server and execute the following rake tasks:
      • pl:sign_tar
      • pl:sign_rpms
      • pl:sign_deb_changes
    • rsync the remote pkg/ directory contents to the local pkg/ directory
  • pl:jenkins:tar

    Perform package:tar by posting a jenkins build. Run pl:jenkins:retrieve to retrieve the built packages.

  • pl:jenkins:uber_build

    Create a jenkins job on the fly that performs an aggregate of build tasks. These include all the debian builds using pl:deb COW=<cow>, rpm builds with pl:mock MOCKS=<mock>, package:tar, package:apple, and package:gem if applicable. See jenkins-tasks above for more detail.

  • pl:jenkins:uber_ship

    An aggregate of retrieval, signing, and shipping tasks. Execute pl:jenkins:retrieve to retrieve any packages on the distribution server that were built from the SHA/ref of HEAD. Then pl:jenkins:sign_all to sign all packages. Finally, pl:uber_ship, pl:remote:freight, and pl:remote:update_yum_repo. pl:jenkins:uber_build combined with pl:jenkins:uber_ship performs the entire build and release process for a project.

  • pl:mock

    Use mock to build an rpm package using the default mock distribution, Redhat Linux 5, i386. Requires that the mock package be installed. See the puppetlabs-rpmbuilder module for an easy way to set up a host for building with mock. Resulting rpm is staged in ./pkg/<repo_name>/el/rpm/5/(i386 | SRPMS). The <repo_name> is determined by whether the package is a final version or not. Whether the version is final or not is determined by parsing the git describe string - anything containing 'rc', 'SNAPSHOT', '-dirty', a git sha, or a dash after the version (e.g. 1.0.0-22) is considered non-final.

  • pl:mock_all

    The same as bundle exec rake pl:mock, but a package is built for every mock listed in ext/build_defaults.yaml on the line mocks:<mocks>. Packages are staged in ./pkg/<repo_name>/(el | fedora)/$version/(i386 | x86_64 | SRPMS). The subdirectories are dependent on the mock that is used. The task assumes that the mock configurations are the standard Puppet mock configurations that are generated by the puppetlabs-rpmbuilder module.

  • pl:print_build_params

    Print all build parameters to $stdout as they would be used in a package build. This prints data that is loaded from ext/build_defaults.yaml and ext/project_data.yaml, as well as whatever is overridden with environment variables. Useful for debugging problems with parameter values.

  • pl:print_build_param[param]

    Print a specific build parameter to $stdout as it would be used in a package build. This prints data that is loaded from ext/build_defaults.yaml and ext/project_data.yaml, as well as whatever is overridden with environment variables. Useful for debugging problems with parameter values. param should be the name of the parameter as a symbol, e.g. :ref or :version

  • pl:remote:freight

    Performs an ssh call to the package server that calls a server-side rake task. The rake task takes the debian packages that have (presumably) been shipped via pl:ship_debs and invokes freight with them, which places them in the apt repository.

  • pl:remote:update_yum_repo

    As with pl:remote:freight, this task performs an ssh call to the yum RPM package server, and invokes an existing server-side rake task. The task iterates through the el and fedora directories of the yum repository and re-creates package server metadata for rpms in the subdirectories.

  • pl:ship_debs

    Rsync pkg/deb/* to the "incoming" directory on the debian apt package repository server. Note: this task does not place the packages into production - it is more accurate to consider the packages "staged" on the repository server rather than actually shipped. The pl:remote:freight task takes the packages in the "incoming" directory and actually places them in the apt server.

  • pl:ship_gem

    Takes the built gem in pkg/ and pushes it to rubygems.com. This task assumes you have the appropriate rubygems.com access and config to push the gem.

  • pl:ship_ips

    Takes the IPS packages in pkg/ips/pkgs/ and rsyncs them to a holding directory on a package download server. This is not a true IPS server yet, but just a basic file server. Eventually the goal is to have a true IPS package repository running.

  • pl:ship_rpms

    Rsyncs the contents of pkg/el and pkg/fedora into the yum repository server. While these packages are available immediately for download by browsing the yum server directories directly, the yum repodata metadata has not been updated, and thus the packages are not available to yum clients. The pl:remote:update_yum_repo task updates the metadata, after which the packages will be available to yum clients.

  • pl:sign_rpms

    Sign the rpms staged locally under pkg/ with the gpg key user ID (e.g. email) specified in ext/build_defaults.yaml as gpg_name. This value can be overridden by passing GPG_NAME as an environment variable to the rake task.

  • pl:sign_tar

    Use gpg to create a detached signature of the tarball. By default this uses the gpg_key value specified in ext/build_defaults.yaml in the project. This can be overridden by passing GPG_KEY as an environment variable to the rake task.

  • pl:tag

    Create a signed, annotated git tag of the current repository. Requires TAG be passed as an environment variable to the rake task, which is the value that will be used as both the tag message and the name of the tag. The gpg key that is used for signing is assumed from gpg_key in ext/build_defaults.yaml. This can be overridden by passing GPG_KEY as an environment variable to the rake task.

  • pl:uber_ship

    A composite task that performs the following tasks: pl:ship_gem pl:ship_rpms pl:ship_debs pl:ship_dmgs pl:ship_tar pl:jenkins:ship This is essentially a "ship all the things" task, but it is important to note that it does not update either yum or apt repo metadata on these respective servers - this has to be done via pl:remote:update_yum_repo and pl:remote:freight.

  • pl:update_ips_repo

    Take the packages in pkg/ips/pkg and rsync them to the IPS repository server specified in the build_extras.yaml file. Via ssh commands, call pkgrecv, pkgrepo, svcadm on the IPS repository server. Via ssh, restart the IPS repository service.

  • pl:write_build_params

    Generate a yaml file with all the build properties that have been loaded from build_defaults.yaml, project_data.yaml, (optionally) build_extras.yaml(s) via pl:fetch, and any environment variables. This file can be used by the packaging repo as a single source of truth for build data via pl:build_from_params. By default it is written to a temporary location and its location is printed to $stdout. To override the destination, pass OUTPUT_DIR as a environment variable to the task. By default, the name of the file will be either the git tag, if HEAD of the project repository is a tag, or the git sha of HEAD.