perlin_noise
Ruby-implementation of N-dimension Perlin noise.
Installation
gem install perlin_noise
require 'perlin_noise'
Basic
One-dimension
n1d = Perlin::Noise.new 1
0.step(100, 0.01) do |x|
puts n1d[x]
end
Two-dimension, three-dimension, or even more dimensions
n2d = Perlin::Noise.new 2
0.step(100, 0.01) do |x|
0.step(100, 0.01) do |y|
puts n2d[x, y]
end
end
n3d = Perlin::Noise.new 3
n3d[rand, rand, rand]
n5d = Perlin::Noise.new 5
n5d[rand, rand, rand, rand, rand]
Options
:interval
A gradient noise repeats itself at certain interval. (Default interval is 256) You can change the interval of the noise generator but keep in mind that longer interval requires more pseudo-random gradient vectors to be maintained in memory.
n3d = Perlin::Noise.new 3, :interval => 100
n3d[0.1, 0.2, 0.3]
n3d[0.1, 0.2, 100.3]
:seed
You can optionally specify a seed value for the random number generator. (Caveat: seed value is set globally in Ruby 1.8)
noises = Perlin::Noise.new 1, :seed => 12345
Range of noise function
While the original algorithm outputs a number between -1.0 and 1.0, Perlin::Noise#[] manipulates this output and returns a number between 0.0 and 1.0 for ease of use. Thus, noise values at all of the integer lattice points should be 0.5, not 0.
Increasing the contrast
Even though the range of the noise function is from 0 to 1, you'll rarely see a noise value close to either end, as most of the values are distributed around the center. You might want to apply S-shaped curve functions defined in Perlin::Curve module one or more times to push away those "grey" values to either end, achiving more contrasted output.
noise = Perlin::Noise.new 1
n = noise[0.1]
3.times do
n = Perlin::Curve::CUBIC.call n
end
There's a shortcut for this specific process.
contrast = Perlin::Curve.contrast(Perlin::Curve::CUBIC, 3)
n = contrast.call n
Noise gallery
1D noise
noise = Perlin::Noise.new 1, :interval => 200
0.step(300, 0.1).each do |x|
puts '#' * (noise[x] * 60).floor
end
##############################
################################
##################################
##################################
################################
##############################
###########################
#########################
#########################
###########################
##############################
#################################
#####################################
########################################
###########################################
#############################################
###########################################
########################################
#####################################
#################################
##############################
###########################
#########################
#########################
###########################
##############################
################################
##################################
##################################
################################
##############################
##########################
######################
###################
################
###############
################
###################
######################
##########################
##############################
#################################
#####################################
########################################
###########################################
#############################################
###########################################
########################################
#####################################
#################################
##############################
##########################
######################
###################
################
###############
################
###################
######################
##########################
##############################
#################################
#####################################
########################################
###########################################
#############################################
###########################################
########################################
#####################################
#################################
##############################
##########################
######################
###################
################
###############
################
###################
######################
##########################
##############################
################################
##################################
##################################
################################
##############################
###########################
#########################
#########################
###########################
##############################
#################################
#####################################
########################################
###########################################
#############################################
###########################################
########################################
#####################################
#################################
##############################
###########################
#########################
#########################
###########################
##############################
################################
##################################
##################################
################################
##############################
##########################
######################
###################
################
###############
################
###################
######################
##########################
##############################
#################################
#####################################
########################################
###########################################
#############################################
###########################################
########################################
#####################################
#################################
##############################
##########################
######################
###################
################
2D noise
noises = Perlin::Noise.new(2)
contrast = Perlin::Curve.contrast(Perlin::Curve::CUBIC, 2)
bars = " ▁▂▃▄▅▆▇█".each_char.to_a
bar = lambda { |n|
bars[ (bars.length * n).floor ]
}
100.times do |i|
70.times do |y|
n = noises[i * 0.1, y * 0.1]
n = contrast.call n
print bar.call(n)
end
puts
end
▃▃▂▂▁▁▁▁▂▃▃▄▅▅▆▆▆▅▅▅▅▅▅▄▄▃▃▂▂▃▃▄▄▄▄▄▄▄▄▄▅▅▆▇▇▇▇▇▆▅▄▃▂▁ ▁▂▃▄▅▆▆▇▇▆▆▅▅
▂▂▁▁▁▁▁▁▂▂▃▄▄▅▆▆▆▆▆▆▆▆▆▅▅▄▃▂▂▂▃▃▄▄▄▄▄▅▅▅▆▆▇▇██▇▇▆▅▄▃▂▁ ▁▂▃▄▅▆▆▇▇▇▇▆▆
▁▁▁▁▁▁▁▁▂▃▃▄▄▅▅▆▆▆▇▇▇▇▇▆▆▅▄▃▃▃▃▃▄▄▄▅▅▆▆▆▇▇▇███▇▇▆▅▄▃▂▁ ▁▁▂▃▄▅▆▇▇▇▇▇▇
▁ ▁▁▁▂▂▃▃▃▄▄▅▅▆▆▇▇▇▇▇▇▇▇▆▅▄▃▃▃▄▄▄▅▆▆▇▇▇▇▇████▇▇▆▆▅▄▃▂▁ ▁▁▂▂▃▄▅▆▇████
▁▁▁▂▃▃▄▄▄▄▄▄▅▅▆▆▇▇▇███▇▇▆▅▄▄▄▄▄▅▅▆▇▇▇▇▇▇████▇▇▇▆▅▅▄▂▁▁▁▁▁▁▂▃▄▅▆▇████
▁▁▁▂▃▄▄▅▅▅▅▄▄▄▄▄▅▅▆▇▇▇███▇▇▆▅▅▅▅▅▅▆▆▇▇▇▇▇▇▇▇▇▇▇▇▇▆▆▅▄▃▂▁▁▁▁▁▂▂▃▄▆▇▇███
▁▁▂▃▄▅▆▆▆▅▅▅▄▃▃▃▃▄▅▆▇▇▇███▇▇▆▆▅▅▅▅▆▆▇▇▇▇▇▆▆▆▆▆▇▇▆▆▆▅▅▄▃▂▁▁▁▁▂▂▃▄▅▆▇▇▇▇
▂▃▃▄▅▆▇▆▆▆▅▄▄▃▂▂▂▃▄▅▆▆▇▇██▇▇▆▆▅▅▅▅▅▆▆▆▇▆▆▅▅▅▅▅▆▆▆▆▆▅▄▄▃▂▂▂▂▂▂▃▃▄▅▆▆▇▇▆
▃▄▅▅▆▇▇▇▆▅▅▄▃▂▁▁▁▂▃▄▅▅▆▇▇▇▇▇▆▅▅▄▄▄▅▅▆▆▆▅▅▄▄▄▄▄▅▅▅▅▅▄▄▃▃▂▂▂▂▃▃▃▄▅▅▆▆▆▆▅
▄▅▅▆▇▇▇▆▆▅▄▃▂▂▁▁▁▁▂▃▄▅▆▆▇▇▇▆▅▅▄▄▃▄▄▄▅▅▅▅▄▃▃▃▃▃▄▄▄▄▄▄▃▃▂▂▂▃▃▄▄▄▅▅▅▆▅▅▅▄
▅▅▆▇▇▇▆▆▅▄▃▃▂▁▁ ▁▁▂▃▃▄▅▆▆▆▆▅▄▄▃▃▂▃▃▃▄▄▄▄▃▃▂▂▂▃▃▃▃▃▃▃▂▂▂▂▃▃▄▅▅▅▆▆▆▆▅▅▄▃
▅▆▆▇▇▇▆▅▄▃▂▂▁▁ ▁▂▂▃▄▅▅▆▆▅▄▃▂▂▂▂▂▂▃▃▄▄▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▄▅▅▆▆▆▆▆▆▅▄▄▃
▅▆▆▆▆▆▅▄▃▂▁▁▁ ▁▂▃▃▄▅▅▅▅▄▃▂▁▁▁▁▁▂▂▃▄▄▃▃▂▂▂▁▁▁▁▁▁▁▁▁▁▂▃▄▅▆▆▆▆▆▆▆▅▅▄▄▃
▅▅▆▆▆▅▄▃▂▁▁▁ ▁▁▂▃▄▄▅▅▅▄▃▂▁▁ ▁▁▂▃▄▄▄▃▃▂▂▁▁▁▁▁▁ ▁▁▂▃▄▅▆▆▆▆▆▆▆▅▅▄▄▄
▄▅▅▅▅▄▃▂▁▁▁▁▁ ▁▁▁▂▃▄▄▅▅▅▅▄▃▁▁ ▁▂▃▄▅▅▅▄▄▃▂▁▁ ▁▁▂▄▅▆▆▆▆▆▅▅▅▅▅▅▅▄
▄▄▄▄▄▃▂▁▁▁▁▁▁▁▁▁▂▃▃▄▅▆▆▆▅▄▃▁▁ ▁▁▂▄▅▅▅▅▅▄▃▂▂▁ ▁▁▂▃▅▆▆▆▆▅▅▄▄▄▄▅▅▅▅
▃▄▄▄▃▃▂▁▁▁▁▂▂▂▂▂▃▃▄▅▅▆▆▆▅▄▃▂▁▁▁▁▁▂▃▅▅▆▆▆▅▅▄▃▂▁▁▁▁▁▁▁▂▃▄▅▆▆▆▆▅▄▃▃▃▄▄▅▅▆
▃▄▄▄▄▃▂▂▂▂▂▃▃▃▃▃▃▄▄▅▅▆▆▆▅▅▄▃▂▂▂▂▃▃▄▅▆▆▆▆▅▅▄▃▂▁▁▁▁▂▂▂▃▄▅▆▇▆▆▅▄▃▃▂▃▃▄▅▅▆
▃▄▄▄▄▃▃▃▂▃▃▄▄▄▄▄▃▃▄▄▅▅▆▆▅▅▄▃▃▃▃▃▄▄▅▆▆▆▆▅▅▄▃▃▂▂▂▂▂▃▃▄▄▅▆▇▇▇▆▅▄▃▂▂▂▃▄▄▅▅
▄▅▅▅▅▄▄▃▃▃▄▅▅▅▄▄▃▃▃▃▄▅▅▅▅▅▅▄▄▄▄▄▅▅▆▆▆▆▅▅▄▃▃▂▂▂▂▂▃▄▄▅▅▆▇▇▇▇▆▅▄▃▂▂▂▂▃▄▄▄
▅▅▆▆▅▅▅▄▄▄▅▅▅▅▅▄▃▂▂▃▃▄▄▅▅▅▅▅▅▅▅▅▆▆▆▆▆▅▄▄▃▃▂▂▂▂▂▃▄▄▅▅▆▇▇▇▇▇▆▅▄▃▂▂▂▂▂▃▃▃
▆▆▆▆▆▆▅▅▅▅▆▆▆▆▅▄▃▂▂▂▂▃▃▄▅▅▆▆▆▆▆▆▆▇▆▆▅▄▃▃▂▂▁▁▁▂▂▃▄▅▅▆▆▇▇██▇▇▆▅▄▃▂▂▂▂▂▃▃
▆▇▇▇▇▆▆▆▆▆▆▇▇▆▅▄▃▂▁▁▁▂▂▃▄▅▆▆▇▇▇▇▇▇▇▆▅▄▃▂▁▁▁▁▁▁▂▃▄▅▅▆▆▇▇██▇▇▆▅▄▄▃▂▂▂▂▂▂
▆▇▇▇▇▇▆▆▆▆▇▇▇▇▆▄▃▁▁▁▁▁▁▂▄▅▆▇▇████▇▇▆▅▃▂▁▁▁ ▁▁▂▃▄▅▅▅▆▆▇▇▇▇▇▇▆▅▄▃▃▂▂▂▂▂
▆▇▇▇▇▇▆▆▆▆▇▇▇▇▆▅▃▁▁ ▁▁▂▃▅▆▇█████▇▇▆▅▃▂▁▁ ▁▁▂▃▄▄▄▄▅▅▆▇▇▇▇▇▆▆▅▄▃▂▂▂▂▃
▆▇▇▇▇▆▆▅▅▆▆▇▇▇▇▅▄▂▁▁▁▁▁▂▃▅▆▇███▇▇▇▆▆▅▄▃▂▁▁ ▁▁▂▃▄▄▄▃▄▄▅▆▇▇▇▇▇▆▅▄▃▃▂▂▃▃
▅▆▇▇▆▆▅▅▅▅▆▇▇▇▇▆▄▃▂▁▁▁▁▂▃▅▆▇▇▇▇▇▇▆▆▆▅▄▃▂▂▁▁▁▁▂▃▃▄▄▃▃▃▃▄▅▆▆▇▇▆▆▅▄▃▂▂▂▃▃
▅▆▆▆▆▅▄▄▄▄▅▆▇▇▇▆▅▄▃▂▂▂▂▂▃▄▅▆▆▆▆▆▅▅▅▅▅▅▄▃▃▂▁▁▂▂▃▄▄▄▃▂▂▂▃▄▅▆▆▆▆▅▅▄▃▂▂▂▃▄
▄▅▆▆▅▄▄▃▃▄▄▅▆▇▇▇▆▅▄▃▃▃▃▃▄▄▅▅▆▅▅▅▄▅▅▅▅▅▅▄▃▃▂▂▂▃▄▄▄▄▃▃▂▂▃▃▄▅▅▅▅▄▄▃▂▂▂▂▃▄
▄▅▅▅▅▄▃▃▃▃▄▅▆▇▇▇▆▆▅▄▄▄▄▄▄▄▅▅▅▄▄▄▄▄▄▅▅▆▅▅▄▃▃▃▃▄▄▅▅▅▄▃▃▃▃▃▄▄▄▄▄▄▃▂▁▁▁▂▂▃
▄▅▅▅▅▄▃▃▂▃▄▅▆▆▇▇▇▆▆▅▅▅▄▄▄▄▄▄▄▄▃▃▃▃▄▅▆▆▆▅▅▄▃▃▄▄▅▅▆▅▅▄▄▃▃▃▃▃▄▃▃▃▂▁▁▁▁▁▂▃
▃▄▅▅▄▄▃▃▃▃▄▅▆▆▇▇▇▇▆▆▅▅▅▅▅▄▄▄▄▃▃▂▂▃▄▅▆▆▆▆▅▄▄▄▄▅▆▆▆▆▆▅▅▄▃▃▃▃▂▂▂▂▁▁▁ ▁▁▂▃
▃▃▄▄▄▄▃▃▃▄▄▅▆▇▇▇▇▇▆▆▆▅▅▅▅▄▄▄▄▃▃▃▃▃▄▅▆▇▇▆▆▅▅▄▅▅▆▇▇▇▆▆▆▅▄▃▂▂▁▁▁▁▁ ▁▁▂▃
▂▃▃▄▄▄▄▄▄▄▅▆▆▇▇▇▇▇▆▆▅▅▅▄▄▄▄▄▄▄▃▃▃▄▅▆▇▇▇▇▆▅▅▅▅▅▆▇▇▇▇▇▆▆▄▃▂▁▁▁▁ ▁▁▂▃▃
▁▂▃▃▄▄▄▄▅▅▆▆▇▇▇▇▇▇▆▅▅▄▄▄▄▄▄▅▅▅▄▄▄▅▆▇▇▇▇▇▆▆▅▄▄▅▅▆▇▇▇▇▇▆▅▃▂▁▁ ▁▁▁▂▂▃▄
▁▂▃▃▄▄▅▅▅▆▆▆▇▇▇▇▇▆▅▅▄▃▃▃▃▄▄▅▅▅▅▅▅▅▆▇▇▇▇▇▆▅▄▄▄▄▄▅▆▇▇▇▇▆▅▄▂▁▁ ▁▁▁▁▁▂▂▃▄▅
▂▂▃▃▄▅▅▅▆▆▆▆▆▇▇▇▆▆▅▄▃▃▂▂▃▃▄▅▅▆▅▅▅▆▆▇▇▇▇▆▆▅▄▃▃▃▃▄▅▆▆▇▇▆▅▄▃▂▁▁▁▁▂▂▂▃▃▄▄▅
▂▃▃▄▅▅▅▅▆▆▆▆▆▆▆▆▆▅▅▄▃▃▂▂▂▃▄▅▅▆▅▅▅▆▆▇▇▇▆▆▅▄▃▂▂▂▂▃▄▅▆▆▆▆▅▄▃▂▂▂▂▃▃▃▃▄▄▄▄▅
▃▄▄▅▅▅▅▅▅▅▅▅▅▆▆▆▆▆▅▄▃▃▂▂▂▃▄▄▅▅▅▅▅▅▆▆▇▆▆▅▄▃▂▂▁▁▁▂▃▄▅▅▆▆▅▄▃▃▃▃▃▄▄▄▄▄▄▄▄▄
▄▄▅▅▅▅▅▄▄▄▄▄▄▅▅▆▆▆▅▅▄▃▃▂▂▃▃▄▄▄▄▄▄▅▅▆▆▆▆▅▄▃▂▁▁▁▁▁▂▃▄▅▅▅▅▄▄▃▃▃▄▅▅▅▅▄▄▃▃▄
▅▅▆▆▅▅▄▄▃▃▃▃▄▄▅▆▆▆▆▅▅▄▃▃▃▃▃▃▃▃▃▃▃▄▄▅▆▆▅▅▄▃▂▁ ▁▂▂▃▄▄▅▅▄▄▄▄▄▅▅▅▅▅▄▃▃▃▃
▆▆▆▆▆▅▄▃▃▂▂▃▃▄▅▆▆▆▆▆▅▅▄▃▃▂▂▂▂▂▂▂▂▂▃▄▅▅▅▄▃▃▂▁ ▁▁▂▂▃▃▄▄▄▄▄▄▅▅▆▆▆▅▄▃▃▂▂
▆▇▇▇▆▅▄▃▂▂▂▂▃▄▅▅▆▆▆▆▆▅▅▄▃▃▂▂▁▁▁▁▁▁▂▃▄▄▄▄▃▃▂▁▁ ▁▁▁▂▂▃▃▃▃▄▄▅▅▆▆▆▅▅▄▃▃▃
▇▇▇▇▆▅▄▃▂▂▂▃▃▄▅▅▆▆▆▆▆▆▅▅▄▃▂▁▁▁ ▁▁▂▃▄▄▄▄▃▃▂▁▁▁ ▁▁▁▁▂▂▂▂▃▄▄▅▅▆▆▆▅▄▄▃▃
▇▇▇▇▇▆▄▃▃▂▃▃▄▄▅▅▅▅▆▆▆▆▆▅▅▄▃▂▁ ▁▁▂▃▄▄▄▄▄▃▃▂▁▁▁▁▁▁▁▁▁▁▂▂▃▄▄▅▅▆▆▆▅▅▄▄
▇▇▇▇▇▆▄▃▃▃▄▄▅▅▅▅▅▅▅▅▅▆▆▆▆▅▃▂▁▁ ▁▁▂▃▄▄▅▅▅▄▃▃▂▁▁▁▁▁ ▁▁▁▂▃▄▄▅▅▆▆▆▆▅▅
▆▇▇▇▆▅▄▄▃▄▄▅▅▅▅▅▄▄▄▄▅▆▆▆▆▆▅▃▂▁▁▁ ▁▁▂▃▄▄▅▆▆▆▅▄▃▂▂▁▁▁▁ ▁▁▂▂▃▄▅▅▆▆▆▆▆▆
▅▆▆▆▆▅▄▄▃▄▅▅▆▅▅▄▄▃▃▄▄▅▆▇▇▆▆▄▃▂▂▂▁▁▁▁▁▂▃▄▄▅▆▆▇▆▆▄▃▃▂▂▁▁▁ ▁▁▂▂▃▄▄▅▆▇▇▆▆▆
▄▅▆▆▅▅▄▃▃▄▄▅▆▅▅▄▃▃▃▃▄▅▆▇▇▇▆▅▄▄▃▃▂▁▁▁▁▁▂▃▄▅▆▇▇▇▆▆▅▄▃▃▂▁▁▁▁▁▂▃▃▄▅▆▆▇▇▆▆▅
▄▅▅▅▅▄▃▃▃▃▄▅▅▅▄▄▃▂▃▃▄▅▆▇▇▇▇▆▅▅▄▃▃▂▁▁▁▁▂▃▄▅▆▇▇▇▇▆▅▅▄▃▃▂▂▁▁▂▃▃▄▅▅▆▆▇▆▆▅▅
▄▄▅▅▅▄▃▃▂▃▄▄▅▅▄▃▃▂▃▃▄▅▆▇▇▇▇▇▆▅▅▄▄▃▂▁▁▁▂▃▄▅▆▇▇▇▇▇▆▅▅▄▄▃▂▂▂▃▃▄▅▅▆▆▇▆▆▅▄▄
▃▄▄▅▄▄▃▂▂▃▃▄▄▄▄▃▃▂▃▃▄▅▆▇███▇▇▆▆▆▅▄▃▂▁▂▂▃▄▄▅▆▇▇▇▇▆▆▅▅▄▃▃▃▃▃▄▅▆▆▇▇▇▆▅▄▃▂
▂▃▄▄▄▄▃▃▃▃▃▄▄▄▃▃▃▃▃▄▅▆▇▇█████▇▇▇▆▅▄▃▃▂▃▃▄▄▅▆▇▇▇▆▆▅▅▅▄▃▃▃▃▄▅▅▆▇▇▇▇▆▅▃▂▁
▂▃▃▄▄▄▄▃▃▃▃▄▄▃▃▃▃▃▄▄▅▆▇████████▇▇▆▆▅▄▄▄▄▄▅▅▅▆▆▆▆▅▅▄▄▄▃▃▃▃▄▅▆▆▇▇▇▇▆▄▂▁▁
▂▂▃▄▅▅▅▄▄▄▄▄▃▃▃▃▃▃▄▅▆▆▇██████████▇▇▆▆▅▅▅▅▅▅▅▅▅▅▄▄▄▄▃▃▃▃▃▃▄▅▆▆▇▇▇▆▅▃▂▁
▂▂▃▅▅▆▆▆▅▅▄▄▃▃▂▂▃▃▄▅▆▇▇▇██████████▇▇▇▆▆▅▅▅▄▄▄▃▃▃▃▃▃▃▃▂▂▂▃▃▄▅▆▇▇▇▆▅▃▂▁
▂▃▄▅▆▇▇▆▆▅▅▄▃▂▂▂▂▃▄▅▆▆▇▇▇▇▇▇▇▇▇▇▇██▇▇▇▆▆▅▅▄▃▃▂▂▂▂▂▃▃▂▂▂▂▂▃▃▄▅▆▇▇▆▅▃▂▁▁
▃▄▅▆▇▇▇▇▆▅▅▄▃▂▁▁▂▃▄▅▅▆▆▇▇▇▆▆▆▆▆▆▇▇▇▇▇▇▆▆▅▄▃▃▂▂▂▂▂▂▃▃▂▂▂▂▂▂▃▄▅▆▆▆▆▅▄▃▂▂
▃▄▅▆▇▇▇▇▆▅▄▃▂▂▁▁▁▂▃▄▅▅▆▆▆▆▅▅▅▅▅▅▆▇▇▇▇▇▆▅▅▄▃▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▃▄▅▆▆▆▅▅▄▃▃
▄▅▆▇▇█▇▇▆▅▄▃▂▁▁▁▁▁▂▃▄▅▅▅▅▅▄▄▄▄▄▄▅▆▆▇▇▆▆▅▄▃▂▂▂▂▂▃▃▄▄▄▄▃▃▂▂▂▂▃▄▅▆▆▆▆▅▅▄▄
▅▅▆▇██▇▇▆▅▄▃▂▁ ▁▂▃▃▄▄▅▅▄▄▃▃▃▃▄▄▅▆▆▆▆▅▄▃▃▂▂▁▂▂▃▄▅▅▅▅▄▃▂▂▂▂▃▄▅▆▆▆▆▆▅▅▅
▅▆▇▇██▇▆▅▄▃▂▁▁ ▁▁▂▃▄▄▄▄▄▃▃▂▂▃▃▄▄▅▅▅▅▄▃▃▂▁▁▁▂▃▄▅▅▅▅▅▄▃▂▂▂▂▂▃▄▅▆▆▆▆▆▆▆
▆▇▇███▇▆▅▃▂▂▁ ▁▁▂▃▄▄▄▄▄▃▃▃▂▃▃▃▄▄▄▄▄▃▂▂▁▁▁▁▁▂▃▅▅▅▅▅▄▃▂▁▁▁▂▃▃▄▅▆▇▇▇▇▇
▇▇████▇▆▄▃▂▁▁ ▁▂▃▃▄▅▅▅▅▄▄▃▃▃▃▃▄▄▄▃▃▂▂▁▁ ▁▁▂▃▄▅▅▅▄▄▃▂▁▁▁▁▂▃▄▅▆▇▇███
▇▇████▇▆▄▃▂▁▁ ▁▂▃▄▅▅▆▆▆▅▅▄▄▄▄▄▄▃▃▃▂▂▁▁ ▁▂▂▃▄▄▄▄▃▂▁▁▁▁▁▁▂▃▄▆▇▇███
▇▇████▇▆▄▃▂▁▁ ▁▂▃▄▅▅▆▆▇▇▆▆▅▅▄▄▄▄▃▃▃▂▂▁▁▁ ▁▁▂▃▃▃▃▃▂▂▁▁▁▁▁▁▂▃▄▆▇▇███
▆▇▇███▇▆▅▃▂▂▁ ▁▂▃▄▅▆▆▇▇▇▇▇▆▅▅▄▄▄▃▃▃▃▂▂▁▁▁▁▁▁▁▂▂▃▃▃▂▂▁▁▁▁▁▁▂▂▃▄▆▆▇▇▇▇
▅▆▇▇██▇▆▅▄▃▂▁▁ ▁▁▂▃▄▅▆▆▇▇█▇▇▆▆▅▅▄▄▄▃▃▃▃▃▂▂▁▁▁▁▂▂▂▃▃▃▂▂▂▁▁▁▁▂▂▃▄▅▆▆▇▇▇▆
▅▅▆▇██▇▇▆▅▄▃▂▁▁▁▁▂▃▄▅▅▆▇▇▇▇▇▆▅▅▄▄▃▃▄▄▄▄▄▃▃▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂▃▃▄▄▅▆▆▆▆▆▅
▄▅▆▇▇█▇▇▆▅▄▃▂▁▁▁▁▁▂▃▄▅▆▆▇▇▇▆▅▅▄▃▃▃▃▄▄▄▅▄▄▄▃▃▃▃▃▄▄▄▄▄▄▃▃▃▃▃▃▄▄▄▅▆▆▆▆▆▅▄
▃▄▅▆▇▇▇▇▆▅▄▃▂▁▁▁▁▁▂▃▃▄▅▆▆▆▆▆▅▄▃▃▂▃▃▄▅▅▅▅▅▄▄▄▄▄▄▅▅▅▅▅▅▄▄▄▄▄▄▄▅▅▆▆▆▆▆▅▄▄
▃▄▅▆▇▇▇▇▇▆▅▄▃▂▁▁▁▁▂▂▃▄▄▅▆▆▅▅▄▃▃▂▂▂▃▄▅▆▆▆▆▆▅▅▅▅▅▆▆▆▆▆▆▆▅▅▅▅▅▅▆▆▇▇▇▆▆▅▄▃
▃▄▄▆▇▇▇▇▇▆▅▄▃▂▁▁▁▁▂▃▃▄▄▅▅▅▄▄▃▃▂▂▂▃▄▅▆▇▇▇▇▇▆▆▆▆▇▇▇▇▇▇▇▇▆▆▅▅▆▆▆▇▇▇▇▇▆▅▄▃
▃▃▄▅▆▇▇▇▇▆▅▄▃▂▂▁▂▂▃▃▃▄▄▄▄▄▄▃▃▃▂▂▃▄▅▆▇████▇▇▇▇▇▇██████▇▇▆▆▆▆▆▇▇███▇▇▆▅▄
▃▄▄▅▆▆▇▇▆▆▅▄▃▂▂▂▃▃▄▄▄▄▄▄▃▃▃▃▃▃▃▃▄▅▆▇▇█████▇▇▇▇███████▇▇▆▆▆▆▆▇▇████▇▆▅▅
▄▄▄▄▅▆▆▆▆▆▅▄▃▂▂▃▃▄▅▅▅▄▄▃▃▂▂▂▂▃▃▄▅▆▇▇█████▇▇▇▇▇▇█████▇▇▆▆▅▅▅▆▇▇████▇▇▆▅
▄▄▄▄▄▅▆▆▆▅▄▃▃▃▃▃▄▅▅▅▅▅▄▃▂▂▂▂▂▃▄▅▆▆▇███▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▆▅▄▄▄▄▅▆▇▇███▇▇▆▆
▄▄▃▄▄▅▅▆▆▅▄▃▃▂▃▄▄▅▆▆▅▄▃▂▂▁▁▂▂▃▄▅▆▇▇▇▇▇▇▆▆▆▆▆▆▆▆▆▆▆▆▆▆▅▄▃▃▃▃▄▅▆▇▇▇▇▇▇▆▆
▄▄▃▃▄▄▅▅▅▅▄▃▂▂▃▃▄▅▅▅▅▄▃▂▁▁▁▁▂▃▄▅▆▇▇▇▇▇▆▅▅▅▅▄▄▅▅▅▅▅▅▅▄▄▃▂▂▂▃▃▄▅▆▇▇▇▇▆▆▅
▄▃▃▃▃▄▅▅▅▅▄▃▂▂▃▃▄▅▅▅▄▃▂▁▁▁▁▁▂▃▄▅▆▇▇▇▆▆▅▄▄▄▃▃▃▃▄▄▄▄▄▄▃▃▂▂▁▂▂▃▄▅▆▆▇▇▆▆▅▄
▄▃▂▃▃▄▅▅▆▅▄▃▃▂▂▃▃▄▄▄▃▂▂▁ ▁▂▃▄▅▆▆▆▆▆▅▄▃▃▃▃▂▂▂▃▃▃▃▃▃▂▂▁▁▁▁▂▃▄▅▅▆▆▆▅▅▄▃
▃▃▂▃▃▄▅▆▆▅▅▄▃▃▃▃▃▃▃▃▂▂▁ ▁▂▃▃▄▅▆▆▆▅▄▄▃▃▂▂▂▂▂▂▂▂▂▂▂▂▁▁▁▁▁▁▂▃▄▅▅▆▅▄▄▃▂
▄▃▂▃▃▄▅▆▆▆▅▄▄▃▃▃▃▃▂▂▁▁ ▁▂▃▃▄▅▅▅▅▅▄▃▃▃▂▂▂▁▁▁▁▁▁▁▁▁▁ ▁▁▂▂▃▄▅▅▄▃▂▂▁
▄▃▃▃▄▅▆▆▇▇▆▅▅▄▄▃▃▂▂▁▁▁ ▁▁▂▃▃▄▄▅▅▅▅▄▄▃▃▃▂▁▁▁ ▁▁▁▁▁ ▁▁▂▃▃▄▄▄▃▂▁▁
▄▄▃▃▄▅▆▇▇▇▆▆▅▅▄▄▃▂▂▁▁ ▁▁▂▃▃▄▄▄▄▄▅▅▅▄▄▄▃▃▂▁▁ ▁▁▁▁▁ ▁▁▂▂▃▄▄▃▃▂▁
▅▄▄▄▄▅▆▆▇▇▇▆▆▅▅▄▃▃▂▁▁▁ ▁▂▂▃▄▄▄▃▃▃▄▄▅▅▅▅▄▄▃▂▁▁ ▁▁▁▁▁▁▁▁▁▁▁▂▂▃▄▄▄▃▂▁▁
▅▄▄▄▄▄▅▆▇▇▆▆▆▆▅▅▄▃▃▂▁▁▁▁▂▃▄▄▅▅▄▃▃▃▃▄▅▅▆▅▅▄▄▂▁▁ ▁▁▂▂▂▂▂▂▁▁▁▁▂▃▄▄▅▄▄▃▂▁
▅▄▄▃▃▄▅▅▆▆▆▆▆▅▅▅▅▄▄▃▂▂▂▂▃▄▅▅▅▅▄▃▃▃▃▄▅▅▆▆▅▅▄▂▂▁▁▁▁▂▂▃▃▃▃▂▂▂▂▂▃▃▄▅▅▅▅▄▃▂
▅▄▃▃▃▃▄▄▅▅▅▅▅▅▅▅▅▅▄▄▃▃▂▃▄▄▅▆▆▅▄▃▃▂▃▃▄▅▅▅▅▄▃▂▁▁▁▁▂▃▃▄▄▄▄▃▃▂▂▃▃▄▅▆▆▆▆▅▄▄
▄▃▃▂▂▂▃▄▄▄▄▄▄▄▅▅▅▅▅▅▄▃▃▄▄▅▅▆▆▅▄▃▂▂▂▃▄▄▅▄▄▃▃▂▁▁▁▂▂▃▄▅▅▅▅▄▃▃▃▃▄▅▆▆▇▇▇▆▅▅
▃▃▂▂▂▂▂▃▃▃▃▃▃▄▄▅▆▆▆▅▅▄▄▄▅▅▆▆▆▅▄▃▂▂▂▂▃▄▄▄▃▃▂▁▁▁▁▂▃▄▅▅▆▆▅▅▄▄▄▄▅▅▆▇▇▇▇▇▆▅
▃▂▂▁▁▁▁▂▂▂▂▂▂▃▄▅▆▆▇▆▆▅▅▅▅▆▆▆▅▅▄▃▂▂▂▂▃▃▃▃▃▂▂▁▁▁▂▂▃▄▅▆▆▆▆▅▅▄▄▅▅▆▇▇███▇▇▆
▃▂▂▁▁▁▁▁▁▁▁▁▁▂▃▅▆▇▇▇▇▆▆▆▆▆▆▆▅▅▄▃▂▂▂▂▃▃▃▃▃▂▂▁▁▂▂▃▄▅▆▆▆▆▆▅▅▅▅▆▆▇▇██████▇
▃▂▂▁▁▁▁▁▁ ▁▂▄▆▇██▇▇▇▇▇▇▇▆▅▄▃▃▂▂▂▂▃▄▄▄▃▃▂▂▂▃▃▄▅▆▆▆▆▆▅▅▅▅▅▆▇▇████████
▄▃▂▁▁▁▁ ▁▂▄▆▇████▇▇▇▇▇▆▅▄▃▂▂▂▂▃▃▄▅▄▄▃▃▃▃▄▄▅▆▆▆▆▅▅▅▄▄▅▅▆▇▇████████
▄▃▂▂▁▁▁▁▁▁ ▁▂▃▅▇▇██▇▇██▇▇▆▆▄▃▃▂▂▂▃▄▅▅▅▅▄▄▄▄▅▅▆▆▆▆▅▅▄▃▃▄▄▅▆▇▇████████
▄▄▃▂▂▁▁▁▁▁▁▁▁▁▂▃▅▆▇▇▇▇▇▇▇▇▇▆▆▅▄▃▂▂▂▃▄▅▆▆▅▅▄▄▅▅▆▆▆▆▅▄▄▃▂▂▂▃▄▅▆▇▇███▇▇▇▇
▅▄▃▂▂▂▂▂▂▂▂▂▁▂▂▃▄▅▆▆▆▆▆▇▇▇▇▆▆▅▄▃▂▂▃▃▄▅▆▆▅▅▄▅▅▆▆▆▆▅▅▄▃▂▁▁▂▂▄▅▅▆▇▇▇▇▆▆▆▆
▄▄▃▂▂▃▃▃▄▃▃▃▂▂▂▃▃▄▅▅▅▅▆▆▇▇▇▆▆▅▄▃▂▂▃▃▄▅▅▅▅▄▄▄▅▅▆▆▆▅▄▃▂▁▁▁▁▂▃▄▅▅▆▆▆▆▅▅▅▅
▄▃▃▂▂▃▃▄▄▄▄▄▃▃▃▃▃▃▄▄▄▄▅▅▆▇▇▆▆▅▄▃▂▂▂▃▄▄▅▅▄▃▃▄▄▅▆▆▆▅▄▃▂▁ ▁▁▂▃▄▅▅▆▅▅▅▄▄▄
Noise synthesis
Noise looks much more interesting when combined.
noises = Perlin::Noise.new(2)
contrast = Perlin::Curve.contrast(Perlin::Curve::QUINTIC, 3)
100.times do |x|
n = 0
[[0.02, 10], [0.04, 10], [0.1, 20], [0.2, 15]].each_with_index do |step_scale, idx|
step, scale = step_scale
n += contrast.call( noises[idx, x * step] ) * scale
end
puts '=' * n.floor
end
================================
=========================================
===============================================
===============================================
========================================
===========================
===================
=====================
========================
===========================
============================
=============================
==============================
==============================
==============================
===========================
=======================
======================
======================
========================
==========================
============================
===============================
=================================
==================================
=================================
================================
=================================
==================================
=====================================
======================================
=========================================
================================================
=========================================================
===========================================================
=====================================================
==============================================
===============================================
=====================================================
=================================================
=================================
==================
=============
=============
====================
============================
=====================================
==============================================
================================================
=============================================
================================
==================
============
===========
===========
==================
=========================
==========================
===========================
================================
================================
==================================
=========================================
==================================================
====================================================
===============================================
=========================================
==========================================
==============================================
============================================
===============================
================
==========
========
==========
=============
===================
==========================
===============================
================================
=========================
================
===========
=======
======
=============
====================
======================
========================
=============================
===============================
==================================
=======================================
========================================
=========================================
================================================
======================================================
======================================================
===============================================
======================================
================================
Contributors
License
References
- Texturing & modeling: a procedural approach by David S. Ebert et al.
- Improving Noise by Ken Perlin (http://mrl.nyu.edu/~perlin/paper445.pdf)
- http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html#algorithm
- http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
- http://burtleburtle.net/bob/rand/unitvec.html
- http://briansharpe.wordpress.com/2011/11/14/two-useful-interpolation-functions-for-noise-development/
- http://http.developer.nvidia.com/GPUGems/gpugems_ch05.html
- http://www.java-gaming.org/index.php?topic=22796.0