Project

pinecone

0.04
The project is in a healthy, maintained state
Ruby client library which includes index and vector operations to upload embeddings into Pinecone and do similarity searches on them.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
 Dependencies

Runtime

~> 0.22.0
~> 1.6.0
 Project Readme

Pinecone Ruby Client

Gem Version GitHub

Ruby AI Builders Discord

This is the complete Pinecone API and fully tested. Bug reports and contributions are welcome!

Installation

gem install pinecone

Configuration

require "dotenv/load"
require 'pinecone'

Pinecone.configure do |config|
  config.api_key  = ENV.fetch('PINECONE_API_KEY')
  config.environment = ENV.fetch('PINECONE_ENVIRONMENT')
end

Index Operations

Listing Indexes

pinecone = Pinecone::Client.new
pinecone.list_indexes

Describe Index

pinecone.describe_index("example-index")

Create Index

pinecone.create_index({
  "metric": "dotproduct",
  "name": "example-index",
  "dimension": 3,
  "spec": {
        "pod": {
          "environment": "gcp-starter",
          "pod_type": "starter"
        }
      }
})

Delete Index

pinecone.delete_index("example-index")

Scale replicas

new_number_of_replicas = 4
pinecone.configure_index("example-index", {
  replicas: new_number_of_replicas
  pod_type: "s1.x1"
})

Vector Operations

Adding vectors to an existing index

pinecone = Pinecone::Client.new
index = pinecone.index("example-index")

index.upsert(
  namespace: "example-namespace",
  vectors: [{
    id: "1",
    metadata: {
      key: value
    },
    values: [
      0.1,
      0.2,
      0.0
    ]
  }]
)

Querying index with a vector

pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
embedding = [0.0, -0.2, 0.4]
response = index.query(vector: embedding)

Querying index with options

pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
embedding = [0.0, -0.2, 0.4]
response = index.query(vector: embedding, 
                        namespace: "example-namespace",
                        top_k: 10,
                        include_values: false,
                        include_metadata: true)

Fetching a vector from an index

pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
index.fetch(
  ids: ["1"], 
  namespace: "example-namespace"
)

List all vector IDs (only for serverless indexes)

pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
index.list(
  namespace: "example-namespace",
  prefix: "example-prefix",
)


index.list(
  namespace: "example-namespace",
  prefix: "example-prefix",
  limit: 150
) do |vector_id|
  puts vector_id
end

List vector IDs with pagination (only for serverless indexes) (default limit of 100)

pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
index.list_paginated(
  namespace: "example-namespace",
  prefix: "example-prefix",
  limit: 50,
  pagination_token: "example-token"
)

Updating a vector in an index

pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
index.update(
  id: "1", 
  values: [0.1, -0.2, 0.0],
  set_metadata: { genre: "drama" },
  namespace: "example-namespace"
)

Deleting a vector from an index

Note, that only one of ids, delete_all or filter can be included. If ids are present or delete_all: true then the filter is removed from the request.

pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
index.delete(
  ids: ["1"], 
  namespace: "example-namespace", 
  delete_all: false,
  filter: {
    "genre": { "$eq": "comedy" }
  }
)

Describe index statistics. Can be filtered - see Filtering queries

pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
index.describe_index_stats(
  filter: {
    "genre": { "$eq": "comedy" }
  }
)

Filtering queries

Add a filter option to apply filters to your query. You can use vector metadata to limit your search. See metadata filtering in Pinecode documentation.

pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
embedding = [0.0, -0.2, 0.4]
response = index.query(
  vector: embedding,
  filter: {
    "genre": { "$eq": "comedy" }
  }
)

Metadata filters can be combined with AND and OR. Other operators are also supported.

{ "$and": [{ "genre": "comedy" }, { "actor": "Brad Pitt" }] } # Genre is 'comedy' and actor is 'Brad Pitt'
{ "$or": [{ "genre": "comedy" }, { "genre": "action" }] } # Genre is 'comedy' or 'action'
{ "genre": { "$eq": "comedy" }} # Genre is 'comedy'
{ "favorite": { "$eq": true }} # Is a favorite
{ "genre": { "$ne": "comedy" }} # Genre is not 'comedy'
{ "favorite": { "$ne": true }} # Is not a favorite
{ "genre": { "$in": ["comedy", "action"] }} # Genre is in the specified values
{ "genre": { "$nin": ["comedy", "action"] }} # Genre is not in the specified values
{ "$gt": 1 }
{ "$gte": 0.5 }
{ "$lt": -0.5 }
{ "$lte": -1 }

Specifying an invalid filter raises ArgumentError with an error message.

Sparse Vectors

pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
embedding = [0.0, -0.2, 0.4]
response = index.query(
  vector: embedding,
  sparse_vector: {
    indices: [10, 20, 30],
    values: [0, 0.5, -1]
  }
)

The length of indices and values must match.

Query by ID

pinecone = Pinecone::Client.new
index = pinecone.index("example-index")
embedding = [0.0, -0.2, 0.4]
response = index.query(
  id: "vector1"
)

Either vector or id can be supplied as a query parameter, not both. This constraint is validated.

Collection Operations

Creating a collection

pinecone = Pinecone::Client.new
pinecone.create_collection({
  name: "example-collection", 
  source: "example-index"
})

List collections

pinecone.list_collections

Describe a collection

pinecone.describe_collection("example-collection")

Delete a collection

pinecone.delete_collection("example-collection")

Contributing

Contributions welcome!

  • Clone the repo locally
  • bundle to install gems
  • run tests with rspec
  • run linter with standardrb
  • mv .env.copy .env and add Pinecone API Key if developing a new endpoint or modifying existing ones
    • to disable VCR and hit real endpoints, NO_VCR=true rspec
  • Cloud index helpers
    • rake indices:start
    • rake indices:stop
    • rake indices:clear
    • rake indices:counts

License

The gem is available as open source under the terms of the MIT License.