Tebako: An advanced image packager for interpretive languages
Purpose
Tebako is an advanced executable packager designed for applications written in interpretive languages.
It simplifies distribution and deployment by packaging your entire project with a bundled runtime into a single, performant, executable binary.
Architecture
A Tebako package is effectively a self-executing container-in-a-file.
The package contains the following components:
-
An on-file filesystem (OFFS) containing all the project files and dependencies in DwarFS format ("application")
-
A runtime environment that includes the the necessary libraries and interpreters, with patched filesystem calls that redirect access of project files to the on-file filesystem ("runtime")
Tebako is capable to create a single file that contains both runtime and application or place runtime and application to separate files. In the latter case the runtime can be used with different applications or versions of the same application.
Please refer to mode
option below that controls Tebako output.
Supported runtimes, platforms and architectures
Tebako artifacts can be built and executed on the following platforms and architectures.
Platform and version | Architectures | Build system |
---|---|---|
Linux |
||
Ubuntu 20.04 |
amd64, aarch64 |
gcc/g++: 10; clang/clang++: 12 |
Alpine 3.17 |
amd64 |
gcc/g++: default; clang/clang++: default |
macOS |
||
macOS 13 (Ventura) |
amd64, arm64 |
tested agains xcode: [14.3.1] |
macOS 14 (Sonoma) |
amd64, arm64 |
tested agains xcode: [15.0.1, 15.4] |
macOS 15 (Sequoia) |
amd64, arm64 |
tested agains xcode: [16.1] |
Windows |
||
Windows 10 |
amd64 |
MinGW ucrt64 |
Windows 11 |
amd64 |
MinGW ucrt64 |
Windows Server 2019 |
amd64 |
MinGW ucrt64 |
Windows Server 2022 |
amd64 |
MinGW ucrt64 |
Note
|
Windows build caveats:
MacOS build caveats:
|
Ruby version | Supported platforms |
---|---|
2.7.8 |
Linux, macOS |
3.0.7 |
Linux, macOS |
3.1.6 |
Linux, macOS, Windows |
3.2.{4,5,6} |
Linux, macOS, Windows |
3.3.{3,4,5,6} |
Linux, macOS, Windows |
3.4.1 |
Linux, macOS, Windows |
Note
|
Our goal is to support all maintained Ruby releases, including minor versions. |
Package portability
General
Tebako packages are designed to be "forward portable" across different operating systems and architectures to allow for easy distribution and deployment.
Forward portability means that a package created on a specific platform can be executed on a newer version of the same platform.
macOS
macOS packages are forward portable across different macOS versions.
x86_64
macOS packages can be run on Apple M (ARM) systems.
Linux distributions using musl
Packages built for the
musl
implementation of the C standard library
(such as Alpine Linux) are forward portable.
Usage of the Tebako Docker containers for packaging is encouraged since it eliminates the effort needed for toolchain setup and configuration.
Linux distributions using glibc
Packages built for the
glibc
implementation of the C standard library
are forward portable if the --patchelf
experimental option is enabled.
The --patchelf
option allows these packages to be portable to Linux GNU
distributions with GLIBC version 2.31 and above.
--patchelf
option can
be executed on Rocky Linux 9.
Usage of the Tebako Docker containers for packaging is encouraged since it eliminates the effort needed for toolchain setup and configuration.
Distribution | Minimal supported version | GLIBC version |
---|---|---|
Ubuntu |
20.04 (Focal Fossa) |
GLIBC 2.31 |
Debian |
11 (Bullseye) |
GLIBC 2.31 |
Rocky Linux |
9 |
GLIBC 2.34 |
Fedora |
33 |
GLIBC 2.32 |
CentOS |
9 |
GLIBC 2.34 |
Red Hat Enterprise Linux (RHEL) |
9 |
GLIBC 2.34 |
Oracle Linux |
9 |
GLIBC 2.34 |
Future plans
-
Downloading new DwarFS images to be stored in the local home directory
-
Allowing loading multiple DwarFS images in a stacked way
-
Supporting a COW mechanism that the newly written files are stored in a separate image that can be loaded on top of the read-only file systems.
FAQ
Why use Tebako?
Tebako is particularly useful for developers who need to:
-
Distribute applications without requiring users to have specific runtimes installed.
-
Simplify the deployment process by packaging all dependencies into one binary.
-
Ensure consistency across different environments by using a single executable.
-
Flexibility to support different runtime versions on the user’s machine.
How do I know I need Tebako?
You might need Tebako if you:
-
Want to package your application into a single, self-contained binary.
-
Want to avoid the complexities of managing runtime environments on target machines.
-
Distribute software to environments where installing runtimes and their dependencies is challenging.
-
Require a streamlined way to deliver applications to end-users.
-
Need to ensure that your application runs consistently across different environments and architectures.
What is DwarFS?
DwarFS is a fast, high compression read-only user-land file system designed for efficient storage and access of large collections of files.
It is used by Tebako to package applications into a compact and efficient format.
When is Tebako better than comparable solutions?
Tebako offers several advantages over comparable solutions for supported interpretive languages.
They are listed in order of the degree of virtualization below.
Tebako stands out by providing a lightweight runtime bundling approach that simplifies distribution and deployment while offering flexibility and efficiency.
It eliminates the need for users to have specific runtimes installed and ensures consistency across different environments.
With Tebako, you can package your entire project with a bundled runtime into a single, performant, executable binary.
Solution | Pros | Cons |
---|---|---|
Virtual machines (VMs) |
|
|
Docker |
|
|
Tebako |
|
|
Ruby Gems |
|
|
Usage
Command-line interface
Tebako works by packaging your project into a single executable binary that includes all the necessary dependencies.
The way to work with Tebako is through its command-line interface (CLI). It provides the following commands:
setup
-
Prepares the Tebako packaging environment.
press
-
Packages a project into a single executable binary.
clean
-
Removes Tebako artifacts.
clean_ruby
-
Removes Tebako Ruby artifacts.
hash
-
Calculates the Tebako script hash for use as a cache key in CI/CD environments.
version
-
Displays the Tebako version.
help
-
Displays the help message.
Usage
General
Tebako can be used in two ways:
-
Through the Tebako container
-
Local installation
Please refer to the Installation section on how to install Tebako.
Installation
General
Installation of Tebako is only needed in order to package an application.
There is no need to install anything for users who run the packaged application.
Using Docker
General
If you have Docker installed and available, the easiest way to run Tebako is through the official Docker containers.
Docker containers with preinstalled Tebako packaging environments for Ubuntu and Alpine Linux are available at tebako-ci-containers.
Pull the container
Pull the Tebako container image.
docker pull ghcr.io/tamatebako/tebako-<container_tag>:latest
<container_tag>
-
is the desired image tag (e.g.,
ubuntu-20.04
oralpine-3.17
).
Running Tebako commands in the container
Simply prefix the Tebako command with docker run
and the container image.
docker run -v <application_folder>:/mnt/w \
-t ghcr.io/tamatebako/tebako-<container_tag>:latest \
tebako {command} {parameters}
Packaging from outside the container
To package your application from outside the container, just run a single Docker command.
This command mounts the application folder into the container and runs the
tebako press
command, specifying the application root, entry point, output
location, and Ruby version.
docker run -v <application_folder>:/mnt/w \
-t ghcr.io/tamatebako/tebako-<container_tag>:latest \
tebako press <tebako-press-parameters>
<application_folder>
-
is the path to your application folder.
<container_tag>
-
is the desired image tag (e.g.,
ubuntu-20.04
oralpine-3.17
).
Assume that you have a Ruby application in the fontist
folder of the current
directory.
You can package it to ./fontist-package
using the following command:
docker run -v $PWD:/mnt/w \
-t ghcr.io/tamatebako/tebako-ubuntu-20.04:latest \
tebako press --root=/mnt/w/fontist --entry-point=fontist --output=/mnt/w/fontist-package --Ruby=3.2.4
Packaging from inside the container
It is also possible to package an application from inside the Tebako container.
Start and enter the container interactively.
docker run -it --rm -v <application_folder>:/mnt/w \
ghcr.io/tamatebako/tebako-<container_tag>:latest bash
<application_folder>
-
is the path to your application folder.
<container_tag>
-
is the desired image tag (e.g.,
ubuntu-20.04
oralpine-3.17
).
Once inside, run the tebako press
command:
tebako press <tebako press parameters>
Assume that you have a Ruby application in the fontist
folder of the current
directory.
You can package it to ./fontist-package
using the following command:
$ docker run -it --rm -v $PWD:/mnt/w ghcr.io/tamatebako/tebako-<container_tag>:latest bash
# Inside the container:
$ tebako press --root=/mnt/w/fontist --entry-point=fontist --output=/mnt/w/fontist-package --Ruby=3.2.4
Local installation
General
There are cases where Docker may not be suitable for your needs, such as:
-
Admin privileges: Running Docker requires administrative privileges, which means Docker may not be available to users on their machines.
-
Performance penalty: Docker introduces a performance penalty due to the overhead of running containers. This can be a concern when packaging complex applications that require heavy memory usage.
In such cases, you can choose to install Tebako locally.
Tebako is distributed as a Ruby gem. A Ruby environment is necessary.
$ gem install tebako
Prerequisites
These prerequisites are needed only for users who want to install Tebako on their machine and build all Tebako components locally.
If you use Docker, there is no need to set up these prerequisites.
Ubuntu 20.04
General
There are several prerequisites that need to be installed on Ubuntu 20.04 for Tebako to work correctly.
GNU C/C 10+ or Clang C/C 12+
apt install -y gcc-10 g++-10
update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 10
update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-10 10
or
apt install -y clang-12
update-alternatives --install /usr/bin/clang clang /usr/bin/clang-12 150
update-alternatives --install /usr/bin/clang++ clang++ /usr/bin/clang++-12 150
CMake version 3.20+
Tebako requires CMake at a version of at least 3.20+.
If such CMake version is not available as a default package, set it up as follows.
apt-get remove --purge --auto-remove cmake
apt-get update
apt-get install -y software-properties-common lsb-release curl
apt-get clean all
curl https://apt.kitware.com/kitware-archive.sh | bash
apt-get install cmake
Other development tools and libraries
apt-get -y install sudo git curl build-essential pkg-config bison flex autoconf \
binutils-dev libevent-dev acl-dev libfmt-dev libjemalloc-dev libiberty-dev \
libdouble-conversion-dev liblz4-dev liblzma-dev libssl-dev libunwind-dev \
libboost-filesystem-dev libboost-program-options-dev libboost-system-dev \
libboost-iostreams-dev libboost-date-time-dev libboost-context-dev \
libboost-regex-dev libboost-thread-dev libbrotli-dev libdwarf-dev libelf-dev \
libgoogle-glog-dev libffi-dev libgdbm-dev libyaml-dev libncurses-dev \
libreadline-dev libncurses-dev libreadline-dev ruby-dev ruby-bundler \
libutfcpp-dev
Alpine 3.17
General
There are several prerequisites that need to be installed on Alpine 3.17 for Tebako to work correctly.
APK packages
Run the following command to install all prerequisites.
apk --no-cache --upgrade add build-base cmake git bash autoconf boost-static \
boost-dev flex-dev bison make binutils-dev libevent-dev acl-dev sed python3 \
pkgconfig lz4-dev openssl-dev zlib-dev xz ninja zip unzip curl libdwarf-dev \
libunwind-dev gflags-dev elfutils-dev libevent-static openssl-libs-static \
lz4-static xz-dev zlib-static libunwind-static acl-static tar libffi-dev \
gdbm-dev yaml-dev yaml-static ncurses-dev ncurses-static readline-dev \
readline-static p7zip ruby-dev gcompat gettext-dev gperf brotli-dev \
brotli-static jemalloc-dev fmt-dev xz-static
macOS
General
There are several prerequisites that need to be installed on macOS for Tebako to work correctly.
The following instructions work for:
-
macOS 13 (Ventura) through macOS 15 (Sequoia)
Homebrew packages
We use Homebrew to install the necessary packages on macOS.
brew update
brew install gnu-sed bash pkg-config bison flex binutils libffi gdbm zlib \
ncurses double-conversion boost jemalloc fmt glog libevent libsodium lz4 xz \
libyaml openssl@3
brew bundle
Additionaly tebako repository includes Brewfile
that can be used with
brew bundle
command.
brew bundle
Bison 3+
Tebako requires Bison 3+.
On macOS 14, the default Bison version is 2.3, and the Homebrew formula is keg-only, which means that the full path to the Bison binary must be used to utilize the correct version.
Run the following command prior to using Tebako, or add it into your shell profile.
export PATH="$(brew --prefix bison)/bin:$PATH"
jemalloc library build
On macOS, the libdwarfs
build script creates an additional jemalloc
installation. This is done to satisfy the magic applied by folly during linking
but uses a static library.
If the jemalloc
library is built within an emulated environment (QEMU,
Rosetta, etc.), there are known issues
(jemalloc issue #1997)
where jemalloc
incorrectly detects the number of significant virtual address
bits and therefore defines them wrongly (lg-vaddr
parameter).
Technically, these issues can be fixed by explicitly setting the
--with-lg-vaddr
parameter for the jemalloc
build. However, we decided not to
automate this since we do not feel that we can provide reasonable test coverage.
Instead, our build script accepts the LG_VADDR
environment variable and passes
it to the jemalloc build as --with-lg-vaddr=${LG_VADDR}
.
The LG_VADDR
parameter specifies the number of significant virtual address
bits, which can vary based on the CPU architecture and emulation status.
This is a simple example script to set LG_VADDR
.
Note
|
This is provided for illustration only. |
#!/bin/bash
# Check the CPU architecture
ARCH=$(uname -m)
# Check if running under Rosetta 2 emulation
if [[ "$ARCH" == "x86_64" && $(sysctl -n sysctl.proc_translated) == "1" ]]; then
echo "Running on Apple Silicon under Rosetta 2 emulation"
export LG_VADDR=39
elif [[ "$ARCH" == "arm64" ]]; then
echo "Running on Apple Silicon"
export LG_VADDR=39
else
echo "Running on Intel Silicon"
export LG_VADDR=48
fi
echo "Setting lg-vaddr to $LG_VADDR"
Windows
General
The following instructions work for:
-
Windows 10, 11
-
Windows Server 2019, 2022
Ruby
To run Tebako you need to have Ruby installed. It is simplest to use the Ruby development environment provided by RubyInstaller.
For example, Ruby+Devkit 3.1.4-1.
MinGW ucrt64
Enable MinGW ucrt64 and install the necessary packages.
The ridk
command originates from the RubyInstaller installation.
$ ridk enable ucrt64
$ pacman -S git tar bison flex toolchain make cmake
boost diffutils libevent double-conversion
fmt glog dlfcn gtest autotools ncurses libyaml
Packaging
Tebako root folder (aka prefix) selection
The Tebako prefix determines the base directory for the Tebako setup.
It is an essential part of configuring how Tebako operates within your system.
The selection of the Tebako prefix follows a specific order of precedence to ensure flexibility and ease of use:
-
User-specified prefix: The most direct way to set the root folder is by specifying it through a command-line argument.
-
Current Working Directory (PWD): If the prefix option is explicitly set to
PWD
, Tebako uses the current working directory as Tebako root folder. -
Environment variable (
TEBAKO_PREFIX
): In the absence of a user-specified option, Tebako looks for an environment variable namedTEBAKO_PREFIX
. If found, its value is used as the root folder. -
Default value: If no prefix is specified and the
TEBAKO_DIR
environment variable is not set, Tebako defaults to using a directory named.tebako
in the user’s home directory.
Path Expansion: Regardless of the method used to set the Tebako prefix, Tebako
expands the provided path to an absolute path. This expansion includes resolving
relative paths based on the current working directory and expanding user
directory shortcuts like ~
.
Commands
Tebako provides several commands to manage the packaging and deployment process.
Press
This command "presses" a Ruby project using the Tebako components built in the Tebako
root folder (<tebako-root-folder>
).
Note
|
The first invocation of the |
Upon the next invocation, Tebako will use previously created packaging environment. The press process itself takes minutes.
You can manage setup of packaging environment manually; please refer to description of setup and clean commands below.
tebako press \
-e|--entry-point=<entry-point> \
-r|--root=<project-root-folder> \
[-p|--prefix=<tebako-root-folder>] \
[-R|--Ruby=<ruby-version>] \
[-o|--output=<packaged-file-name>] \
[-l|--log-level=<error|warn|debug|trace>] \
[-c|--cwd=<package current working directory>]
[-D|--devmode] \
[-P|--patchelf] \
[-m|--mode=<bundle|both|application|runtime>] \
[-u|--ref=<runtime-reference>] \
[-t|--tebafile=<path-to-tebafile>]
Where:
<tebako-root-folder>
-
the Tebako root folder (see details: Tebako root folder (aka prefix) selection)
Ruby
-
this parameter defines Ruby version that will be packaged (optional, defaults to
3.2.6
) project-root
-
a folder at the host source file system where project files are located. This parameter is not required if the operation mode is
runtime
. entry-point
-
an executable file (binary executable or script) that shall be started when packaged file is called. This parameter is not required if the operation mode is
runtime
. output
-
(optional) the output file name.
Defaults to
<current folder>/<entry point base name>
.On Windows output file will have
exe
extension. If the application is to be a separate file (both
orapplication
mode), it will have the same name with the.tebako
extension. log-level
-
logging level for the Tebako built-in memory filesystem driver (optional, defaults to
error
) cwd
-
(optional) a folder within Tebako memfs where the packaged application will start. This folder should be specified relative to the memfs root.
If not provided, the application will start within the current folder of the host (i.e., at
$PWD
).This argument is required because it is not possible to change the directory to a memfs folder until the package is started, as opposed to any host folder that can be set as the current directory before Tebako package invocation. Tebako saves the original working directory in a global Ruby variable
$tebako_original_pwd
. devmode
-
flag that activates development mode, in which Tebako’s cache and packaging consistency checks are relaxed.
patchelf
-
Allows forward-compatibility of Tebako packages with Linux GNU distributions.
Specifically, this is a flag that removes a reference to the
GLIBC_PRIVATE
version oflibpthread
from a Tebako package. This allows Linux GNU packages to run against versions oflibpthread
that differ from the version used for packaging.NoteThis option only works on GNU Linux only. For example, a package created at Ubuntu 20 system can be used on Ubuntu 22.NoteThe feature is exeprimental, we may consider another approach in the future. mode
-
output mode for tebako package (optional, defaults to
bundle
).bundle
-
place runtime and application to a single file
both
-
create both run-rime and application
application
-
create appplication only
runtime
-
create runtime only
ref
-
(optional) Defaults to
tebako-runtime
. When a Tebako application package is created on Windows, it is linked against a Tebako runtime file name. Theref
parameter allows to specify the name of the runtime file.NoteThe ref
option specificies the name of the runtime — the runtime file can be recreated or changed but not renamed. tebafile
-
the tebako configuration file (optional, defaults to
$PWD/.tebako.yml
). Please refer to the separate section below for description of the tebafile.NoteDevelopment mode is not intended for production use and should only be used during development. Noteentry-point
andproject-root-folder
are required parameters and may be provided either via command-line or in the tebafile.
tebako press \
--root='~/projects/myproject' \
--entry=start.rb \
--output=/temp/myproject.tebako
Setup
This command sets up the Tebako packaging environment.
Collects required packages, builds the and creates packaging environment. This is a lengthy task that can take significant time, up to 1 hour.
Tebako supports several configurations at a single system given that their root directories differ and multiple Ruby versions within single configuration
This command is optional, tebako creates packaging environment automatically upon the first invocation of press command.
However, if you plan to use tebako in CI/CD environment with caching it is
highly recommended to build cache based on tebako setup
output. Building cache
based on tebako press
may create inconsistent environment upon restore.
$ tebako setup \
[-p|--prefix=<tebako-root-folder>] \
[-R|--Ruby=<ruby-version>] \
[-D|--devmode] \
[-t|--tebafile=<path-to-tebafile>]
Where:
<tebako-root-folder>
-
the Tebako root folder (see details: Tebako root folder (aka prefix) selection)
Ruby
-
parameter defines Ruby version that will be packaged (optional, defaults to
3.2.6
) tebafile
-
the tebako configuration file (optional, defaults to
$PWD/.tebako.yml
). Please refer to the separate section below for tebafile description. devmode
-
flag activates development mode, in which Tebako’s cache and packaging consistency checks are relaxed. Please note that this mode is not intended for production use and should only be used during development.
Clean
This command cleans up all Tebako artifacts in the specified prefix directory.
Note
|
These artifacts are created by the setup and press commands.
Normally you do not need to do it since tebako packager optimizes artifacts lifecycle on its own.
|
$ tebako clean \
[-p|--prefix=<tebako-root-folder>] \
[-t|--tebafile=<path-to-tebafile>]
Where:
<tebako-root-folder>
-
the Tebako root folder (see details: Tebako root folder (aka prefix) selection)
tebafile
-
the tebako configuration file (optional, defaults to
$PWD/.tebako.yml
). Please refer to the separate section below for tebafile description.
tebako clean --prefix='~/.tebako'
Clean Ruby
This command cleans up only the Ruby artifacts from the specified prefix directory.
Note
|
These artifacts are created by the setup and press commands.
Normally you do not need to do it, since Tebako packager optimizes artifacts
lifecycle on its own.
|
Note
|
Compiled DwarFS libraries are not cleaned. |
$ tebako clean_ruby
[-p|--prefix=<tebako-root-folder>] \
[-R|--Ruby=<ruby-version>] \
[-t|--tebafile=<path-to-tebafile>]
Where:
<tebako-root-folder>
-
the Tebako setup folder (optional, defaults to current folder)
Ruby
-
defines Ruby version that will cleaned (optional, cleans all versions by default)
tebafile
-
the tebako configuration file (optional, defaults to
$PWD/.tebako.yml
). Please refer to the separate section below for tebafile description.
tebako clean_ruby --prefix='~/.tebako'
Build script hash
This command outputs a hash value for the Tebako build script, which can be used as a cache key in CI/CD pipelines.
$ tebako hash
Tebako configuration file
It is possible to provide all or some options for the tebako
{setup | press | clean | clean_ruby}
commands via a Tebako configuration file
('tebafile').
Tebafile is a YAML file with a single key options
. The options are the same as
long names for the command line.
For example, for the prefix option:
-p|--prefix=<tebako-root-folder>
the key in the YAML file would be 'prefix'.
This is an example tebafile that sets values for prefix and Ruby options:
options:
prefix: /tmp/tebako
Ruby: 3.2.4
Options prefernce order
Tebako supports several methods to set options. The table below show preference order and limitations for specific options. samller order means higher proirity.
Order | Mode | Option source | Applicability |
---|---|---|---|
1 |
All |
Command-line |
All options |
2 |
All |
Tebako configuration file |
All option except |
3 |
All |
Environment variable |
TEBAKO_PREFIX to set |
LG_VADDR to set |
|||
4 |
|
Tebako defaults |
All options except |
|
Tebako defaults |
All options |
Exit codes
The Tebako CLI exits with different exit codes to indicate the status of the operation. The following table lists the possible exit codes and their meanings.
Code | Condition |
---|---|
0 |
No error |
1 |
Invalid command line |
101 |
|
102 |
|
103 |
|
104 |
|
253 |
Unsupported Ruby version |
254 |
Unsupported operating systems |
255 |
Internal error |
Packaging scenarios with Ruby
Tebako for Ruby supports the following packaging scenarios.
This is high-level description of the Tebako Ruby packaging mechanism.
Note
|
These scenarios were inspired by the ruby-packer approach.
|
Note
|
Tebako Ruby is created independently from ruby-packer , no line of code
was copied from ruby-packer .
|
Depending on the configuration files that are present in the root project folder, the Tebako Ruby packager supports different packaging scenarios.
These scenarios differ in what files are packaged and where the entry point is located.
Here is a summary of the scenarios:
Scenario | Description | Packaging | Entry point | *.gemspec |
Gemfile |
*.gem |
---|---|---|---|---|---|---|
1 |
Simple ruby script |
Copy |
|
No |
No |
No |
2 |
Packaged gem |
Install the gem with |
|
No |
No |
One |
3 |
Gem source, no |
|
|
One |
No |
Any |
4 |
Gem source, |
|
|
One |
One |
Any |
Error |
Error: Two or more |
- |
- |
No |
No |
Two or more |
Error |
Error: Two or more |
- |
- |
Two or more |
Any |
Any |
These scenarios determine how the project is packaged and where the entry point is located within the packaged filesystem.
Run-time options
General
Generally Tebako package passes command line options to the packaged application.
For example, if the package was created with the following command
tebako press \
--root='~/projects/myproject' \
--entry=start.rb \
--output=/temp/myproject.tebako
running
/temp/myproject.tebako --option --parameter value
will be translated by Tebako bootstrap code to
myproject --option --parameter value
However there are several command-line parameters that are intercepted processed by Tebako bootstrap code as described below.
Running tebako image by tebako runtime (--tebako-run
option)
Tebako provides an option to an extract its DwarFS filesystem from a package to a local folder for verification or execution.
$ <tebako-runtime> --tebako-run [<tebako application>]
Where,
<tebako runtime>
-
The tebako runtime in
orruntime
modeboth
<tebako application>
-
The tebako application package created in
orapplication
modeboth
Creating separate runtime and application and running it:
tebako press -m runtime -o tebako-runtime
tebako press -m application -o tebako-application -e hello.rb -r test
tabako-runtime --tebako-run tebako-application Maxim
where hello.rb is the Ruby application
# frozen_string_literal: true
puts "Hello, #{ARGV[0]}!"
And expected output from
istabako-runtime --tebako-run tebako-application Maxim
Hello, Maxim!
Image extraction (--tebako-extract
option)
Tebako provides an option to an extract its DwarFS filesystem from a package to a local folder for verification or execution.
$ <tebako-packaged-executable> --tebako-extract [<root folder for extracted filesystem>]
Where,
<root folder for extracted filesystem>
-
The root folder for the extracted filesystem (optional, defaults to
source_filesystem
)
Extracting Tebako content from the metanorma
package:
metanorma --tebako-extract temp-image
The --tebako-extract
option actually runs the following Ruby script:
require 'fileutils'
FileUtils.copy_entry '<in-memory filesystem root>', ARGV[2] || 'source_filesystem'
Mounting host folder to Tebako memfs (--tebako-mount
option)
Some programs unconditionally use folders located under the application root, and when processed by Tebako or similar tools, these folders are included in the packaging.
Rails, for example, does not provide a configuration option to change where
it expects the tmp
folder to be.
The location is hardcoded in multiple places within the Rails codebase, residing under the application root, and as a result, it gets included in the read-only Tebako memfs.
Although patches have been proposed (e.g., rails/rails#39583), there is currently no way to change the paths for temporary files, caches, and sockets.
To address this inevitable limitation for Ruby applications, Tebako provides an option to mount a host folder to the memfs tree.
When using Tebako, consider the packaging scenario mentioned above, as it defines the layout of the application tree.
The --tebako-extract
option may be useful for understanding the placement of
files and folders.
The following command starts a rails.tebako
package with $PWD/tmp
mounted as
local/tmp
in the memfs.
Any remaining command-line parameters are passed to the application.
rails.tebako --tebako-mount local/tmp:$PWD/tmp server
The --tebako-mount
option has the following syntax:
--tebako-mount <memfs path>:<host path>
The --tebako-mount
option can be repeated multiple times to mount more than
one object. The memfs path
is relative to the memfs root, and it is
recommended to use absolute paths for host objects. Both directories and files
can be mounted in this way. Tebako allows overlaying existing memfs objects, so
there are no significant limitations.
Trivia: origin of name
"tamatebako" (玉手箱) is the treasure box given to Urashima Taro in the Ryugu, for which he was asked not to open if he wished to return. He opened the box upon the shock from his return that three hundred years has passed. Apparently what was stored in the box was his age.
This packager was made to store Ruby and its gems, and therefore named after the said treasure box (storing gems inside a treasure box).
Since "tamatebako" is rather long for the non-Japanese speaker, we use "tebako" (手箱, also "tehako") instead, the generic term for a personal box.
Contributing
We welcome contributions! Please see our contributing guidelines for more information.
License
Copyright Ribose. All rights reserved.
Tebako is released under the BSD 2-Clause License. See the LICENSE file for details.