No commit activity in last 3 years
No release in over 3 years
visualisation-utils provides a number of utilities for visualising data from the command line.
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
 Dependencies

Runtime

 Project Readme

visualisation-utils

a collection of scripts for standard visualisation tasks

Installing

gnuplot is required for these scripts to work.

The installation depends on your platform, e.g. for Linux:

sudo apt-get install gnuplot

Then you can install the actual visualisation-utils gem:

gem install visualisation-utils

scatter-plot

Prints scatter plots of one or more columns of whitespace separated data using gnuplot as a backend.

scatter-plot -o scatter-plot.png <<'END'
1 1
2 4
3 9
4 16
5 25
END

It will produce the following image:

gui

time-line

The time-line tool visualises events in a time-line. The data is expected in two columns, a timestamp and an event name. The default time format is %Y-%m-%dT%H:%M:%S.

Here is a simple example:

time-line \
    --dimensions 1300,600 \
    -o time-line.png <<'END'
2015-04-24T12:21:32 A
2015-04-24T10:42:35 B
2015-04-23T11:36:26 B
2015-04-23T11:36:26 C
2015-04-22T12:38:54 A
2015-04-22T07:46:29 C
2015-04-21T18:02:01 B
2015-04-21T18:02:01 A
2015-04-17T17:35:21 B
2015-04-17T12:33:23 A
2015-04-17T09:04:37 D
2015-04-17T09:04:37 B
2015-04-17T08:29:31 D
2015-04-16T07:03:51 C
2015-04-15T07:57:23 E
2015-04-15T07:57:23 B
2015-04-15T07:04:13 B
2015-04-14T12:22:07 F
2015-04-13T09:52:25 C
END

It yields the following graph:

heat-map

Prints a heat map visualising the distribution of geo coordinate samples.

heat-map -o heat-map.png <<'END'
38.6,-90.5
38.6,-90.5
40.5,-74.3
34.4,-92.2
42.5,-83.0
34.1,-92.0
33.3,-111.9
34.1,-91.8
34.2,-86.8
END

This will render to the following visualisation:

map

TODO

  • Overriding of autoscale
  • Create nice PNGs
  • Line plots
  • Changing changing the size of the dots
  • Secondary y-axis
  • Bar chart single series
  • Bar chart multiple series
  • Discrete y-values, e.g. to visualise events over time
  • Histogram plotting